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Abstract—The growth and buoyancy induced departure of vapour bubbles at a horizontal superheated
wall has been studied by global numerical methods. Integral forms of the heat transport equation have
been solved by use of series expansions, obtained by the theory of fractional derivatives. The global
orthogonal collocation method has been applied for the potential flow around the bubble. In this way a
set of only eight or ten ordinary differential equations has to be integrated by computer. The results,
following from prescribed initial temperature distributions, are in gquantitative agreement with
experimental data, obtained in water and aqueous binary mixtures, boiling at subatmospheric pressures.

NOMENCLATURE

a, = k/pc, liquid thermal diffusivity [m?/s],
= (R./R.) in equation (9) [1/s%],
expansion coefficient in series for
velocity potential [m>"?*/s];

A, surface of bubble cap [m?];

b, = — R, deceleration of liquid in
hydrodynamic boundary layer at
r = R [m/s?], expansion coefficient in
series for bubble radius [m];

c, liquid specific heat at constant pressure
[m?/s?> K], = 20/p in equation (9) [m?®/s?];

c, concentration of more volatile component
A in liquid B [kg/m*];

Cq,  Initial bubble growth rate [m/s];

D, diffusion coefficient for more volatile

component A [m?/s];

memory series in equation (19) [m3/s%];

£, x = f, real solution of ax®>+bx*~c =0,
continuous in a, b, ¢ [m], symbol for
general function ;

fo,  expression for f when 4b%/27a%c < 1 [m];

Jws  expression for f when 4b%/27a*c > 1 [m];

g, gravitational acceleration [m/s?];

G, G, memory series in equation (30) [m/s];

h, thickness of liquid layer, especially
of microlayer [m];

hy,  thickness of formation at r = R, of
liquid microlayer [m];

H, mitial height of thermal boundary layer
above superheated wall [m];

i, integer number denoting collocation angle;
J» integer number;
Ja, = peby/p,! Jakob number;

k, liquid thermal conductivity [kgm/s* K],
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integer number in series expansion for
velocity potential ;

latent enthalpy of vaporization [m?/s%];
latent enthalpy of vaporization in
gas—vapour mixture [m?/s?];

molar mass of more volatile component A
{kg/kmol};

molar mass of liquid B and its vapour
[kg/kmol];

unit vector normal to vapour-liquid
interface;

number of collocation angles, number of
terms in Griinwald series (18);

liquid pressure [kg/s* m];

vapour pressure [kg/s?m];

partial vapour pressure of more volatile
component A [kg/s’m];

liquid pressure far away from bubble
[kg/s*m];

= v/a, Prandt] number;

heat flux [kg/s*], number denoting order
of fractional differentiation in

equation (18);

heat flux at vapour-liquid interface in
liquid microlayer [kg/s*];

heat flux at vapour—liquid interface in
bulk liquid [kg/s*];

total heat flow [kgm?/s*];

total mass flow of more volatile
component A [kg/s];

total heat flow at vapour-liquid interface
in liquid microlayer [kgm?/s%];

total heat flow at vapour-liquid interface
in bulk liquid [kgm?/s3];

radial coordinate [m];

minimum meniscus radius [m];

mean meniscus radius [m];

radial coordinate of vapour-liquid
interface at bubble cap [m];
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= gaATh*/av, Rayleigh number ;

critical Rayleigh number;

bubble contact radius [m];

radius of dry area [m];

= (3V/4n)'/3, equivalent bubble radius
[m]:

= gBACh*/av, “salinity” Rayleigh number;
time elapsed since start of bubble
growth [s];

time at which bubble starts to cover
solid wall at place r [s];

absolute temperature {K];

temperature difference with respect to
melting ice, increase in saturation
temperature in binary mixture [K];
absolute bulk temperature [K];

vapour temperature in pure system [K];
parameter characterizing excess pressure
in bubble [K];

temperature of vapour-liquid interface
in liquid microlayer [K];

parameter in equation (34) [K];
temperature of vapour-liquid interface
in bulk liquid [K];

parameter in equation (34) [K];
saturation temperature at pressure p,,
[(KT:

temperature of superheated wall [K];
temperature at edge of thermal boundary
layer in bulk liquid [K];

mean value of T, [K];

liquid velocity vector [m/s];

liquid velocity in radial direction [m/s];
liquid velocity in azimuthal direction
[m/s];

bubble volume [m*];

= R.—r, radial coordinate along wall with
origin at bubble contact radius [m];
mole fraction of more volatile component
A in liquid B;

mole fraction of more volatile component
A at edge of diffusion boundary layer;
mole fraction of more volatile
component A at vapour—liquid interface
in liquid microlayer;

mole fraction of more volatile
component A at vapour-liquid interface
in bulk liquid;

mole fraction of more volatile
component A in vapour B;

= r— R, radial coordinate with origin

at bubble cap, displacement of centre of
spherical bubble due to buoyancy [m].

Greek symbols

volumetric thermal liquid expansion
coefficient [ 1/K];

vapour-liquid—solid contact angle in
triple interphase region;

volumetric salinity expansion coefficient
[m®/kg]:

¥a»  correction factor for heat removal in
liquid microlayer in binary mixture;

yr»  correction factor for heat removal at
bubble cap in binary mixture;
T, gamma function;

I'y,  volumetric rate of vapour production at
vapour-liquid interface in microlayer
[m?/s]:

I'g,  volumetric rate of vapour production at
vapour-liquid interface in bulk liquid

[m3/s];

4, thermal boundary-layer thickness around
bubble cap [m];

1, liquid dynamic viscosity [kg/sm];

He = 2n/h(R ), slip viscosity at
vapour-liquid-solid interfacial line
[kg/sm?];

a, azimuthal coordinate;

8o, =T,— T, wall superheating [K];

Ay, = T,—T, bulk superheating [K];

TR = cos 0, azimuthal cosine;

v, liquid kinematic viscosity [m2/s];

o, liquid density [kg/m*];
p,»  vapour density [kg/m3];

Pems  vapour density in gas—vapour mixture
[kg/m?]);

Pem»  gas density in gas—vapour mixture
[kg/m?];

o, surface tension coefficient [kg/s?];

T, = aJa?/C}, characteristic time for

transitional growth [s];
o, liquid velocity potential [m?/s].

1. INTRODUCTION

Becausk of its importance for practical applications,
heat transfer from a horizontal heated wall to a fluid
has been investigated frequently. One of the most
interesting features in this configuration is the
occurrence of buoyancy effects in the fluid. Buoyancy
forces arise as a result of variations of density in a
fluid subject to gravity.

Well-known is the Bénard problem [1], where
density differences are caused by variations in
temperature, i.e. Ap = —paAT. It has been shown by
Rayleigh [2] that the so-called Rayleigh number Ra
= gaATh*/av plays a dominating part in the stability
properties of the Bénard problem: when Ra is larger
than a critical Rayleigh number Ra,, the flow is
unstable and heat transport by natural convection
occurs.

A comparatively recent development in the field of
natural convection has been the study of fluids in
which there are gradients of two (or more) properties
with different molecular diffusivities. This is the case
in a binary mixture and the variation in density is
given by Ap = — paAT+ pBAC. The stability proper-
ties of this system have been treated by Baines and
Gill [3]. Their results show that both the Rayleigh
number Ra, a so-called “salinity” Rayleigh number
Rs = gBACH3/av, the ratio of diffusivities D/a and
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the Prandtl number v/a determine the stability
properties. For Pr =10, D/a= 102 (ie. salt in
water), Baines and Gill [3] present a diagram
showing the stability properties as a function of Ra
and Rs. In Section 2.1. the above mentioned results
will be used.

Another well-known buoyancy problem is nuc-
leate boiling, where density differences are caused by
liquid-vapour phase transitions, initiated in small
cavities at the wall (so-called heterogeneous nuc-
leation). In practical applications, boiling heat
transfer is often more advantageous than heat
transport by natural convection, since in the former
case the periodic growth and departure of vapour
bubbles causes forced liquid convection, which
contributes substantially more to heat transport than
natural convection.

Unfortunately there is an upper limit in the heat-
transfer rate. At a sufficiently high driving tempera-
ture difference, the number of bubbles at the
superheated wall becomes so large that these vapour
bubbles coalesce and form a coherent vapour fiim,
insulating the wall from the liquid. These dry areas
result in hot spots and eventually in deposition of
salt, which leads to damage of the wall. For that
reason investigations with the purpose to increase
the peak flux are of great practical importance. In
this paper special attention is paid to bubble
departure.

In spite of the many empirical or semi-empirical
correlations available, nucleate boiling heat transfer
is much less understood than natural convection.
This is mainly due to the limited knowledge
available about the nucleation processes in a
heterogeneous medium [4]. In this paper the
nucleation process will not be considered.

In a well-known paper by Fritz [5], bubble
departure is considered as a buoyancy phenomenon
and the departure radius is calculated by a balance
of surface tension and buoyancy forces. However,
since vapour bubbles are growing, surface tension
forces play a negligible part in comparison to inertia
forces. In order to determine the departure radius as
a consequence of buoyancy induced liquid acceler-
ation, knowledge of the bubble growth rate is of
essential importance, as has been shown by Maron-
Moalem et al. [6].

In order to determine bubble growth rates
Bosnjacovi¢ [ 7] simplified the hydrodynamics of the
problem by the assumption that the bubble has a
spherical shape and that the temperature in the
bubble equals the saturation temperature 7,. Only
conductive heat transfer in the liquid to the bubble
cap was considered, resulting in:

= iJa(az)l/{ (1)

R(t) Y

where the dimensionless Jakob number equals:

pe(T,—T)
a=————,

- @)

Both Birkhoff, Margulies and Horning [8] and
Scriven [9] corrected BoSnjacovié’s result by ac-
counting for radial convection. They found a 3!/2
higher value for R(z).

In a survey, Van Stralen [10], however, stressed
that under many conditions, e.g. water boiling at
subatmospheric pressures and liquid metals, the
assumption T, = T is not correct and liquid inertia
has to be included. In this way, for times im-
mediately after nucleation, the following growth rate
is found:

R(t)= F ol
3 pT,

s

1/2
(n—nﬂ =Cot. (3)

Zijl et al. [11] derived an expression for tran-
sitional growth, showing that for t <t = aJa?/C?
the bubble growth rate is given by (3) and for ¢ » 1,
R(t) is given by (1). From their theory it is also seen
that the temperature of the vapour in the bubble
decreases gradually from T, = T fort < tto T, = T,
fort>» 1.

Also for binary systems with a more volatile
component, expressions have been derived and it is
shown that for ¢ > t the bubble growth rate is much
smaller than in a pure liquid under the same
conditions, the reason being that the bubble tem-
perature approaches a value T, = T,+AT. The
practical consequences of this slowing down effect
have been stressed by Van Stralen [12], indicating
that a smaller growth rate results in a smaller
departure radius and consequently in a higher peak
flux in nucleate boiling.

In principle the theories mentioned before only
apply for free bubbles in an initially uniformly
superheated liquid. Cooper and Lloyd [13] extended
the theory derived in [7-9] to bubble growth at a
horizontal superheated wall. Although, qualitatively
speaking, the results do not differ so very much
compared to the theory of free bubbles, the physics
of this problem is much more complicated, mainly
because of the existence of a thin liquid layer, the so-
called evaporating microlayer, between the wall and
the bubble. Van Ouwerkerk [ 14] improved the model
developed in [13] using a similarity solution. Van
Stralen et al. [15] accounted for the fact that the initial
temperature field is not uniformly superheated and that
growth may be inertia-controlled (¢ < ).

Knowing the bubble growth rate, Maron-Moalem
et al. [6] approximated the departure radius with the
aid of the “Kelvin-momentum™ equation for spheri-
cal free bubbles:

1d ( 4 ey 4 R @
——{p- Il=gp- .
240 \"3" p3T
Their results agree with experimental values, ob-
tained in nucleate boiling at a liquid—liquid interface.
After bubble departure, cold bulk-liquid, with a
temperature approximately equal to the saturation
temperature, flows to the superheated wall. This
liquid is heated, first only by conduction and after
some time, when the thermal penetration thickness
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has grown so large that the Rayleigh number Ra (or
Ra and Rs) exceeds the critical value, also by
natural convection. This process has been described
by Han and Griffith [16]. They presented an
expression for the waiting time, i.c. the time interval
between bubble departure and nucleation,

Combination of the theory for the bubble growth
rate [ 7-9], the theory for the departure time [6] and
the theory for the waiting time [16] results in an
expression for the bubble departure radius as a
function of pressure Ry, ~ 1/p, as has been shown
by Maron-Moalem and Zijl [17]. It turns out that
the bubble departure radius is independent of the
dimensions of the cavity in the wall, where the
bubble is nucleated, the dependence on surface
tension turns out to be the same as predicted by
Fritz [5]. In this way relatively simple algebraic
expressions have been obtained to describe buoy-
ancy effects in a fluid, heated from below, where
phase transitions take place at the wall.

However, from a physical point of view the picture
obtained in this way is not fully satisfactory since in
all the theories described before, deviations from the
spherical bubble shape have been neglected; ie. the
hydrodynamics of free spherical bubbles has been
applied.

Deviations from the spherical bubble shape have
been treated by Zijl {18] for gas bubbles and by
Joosten et al. [19] for vapour bubbles, The latter
authors neglected the existence of an evaporating
microlayer and presented only a crude approxi-
mation of the heat-transfer process at the bubble cap.

In the present paper the hydrodynamics of the
problem will be solved by the global orthogonal
collocation method, as has been done in [18,19].
The heat-transfer process, however, both in the
evaporating microlayer and at the bubble cap, will
be treated in much more detail. For that purpose use
has been made of the fractional calculus.

Integrals of fractional order have been applied for
the first time by Abel in 1823 for the tautochrone
problem. In 1920 Heaviside used this concept in
electromagnetic theory (see [20]). In the field of
electrochemistry Oldham and Spanier [21] extended
this theory and presented examples of how to solve
complicated diffusion problems in a simple way. An
example using their theory for growth, oscillations
and implosion of a spherical free vapour bubble has
been presented by Zijl et al. [11]. In this paper the
formalism of fractional calculus will be used to derive
equations which can easily be applied in standard
routines for numerical integration of sets of ordinary
differential equations. The numerical results pre-
sented here have been compared with experimental
data obtained in pure water and water—butanone
mixtures at subatmospheric pressures. The results
are in quantitative agreement.

2. THE EVAPORATING LIQUID MICROLAYER

2.1. Hydrodynamics of the liquid microlayer
During the time that the bubble contact radius R,
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is growing, a thin layer of liquid remains at the
heated wall. This liquid layer is a consequence of the
no-slip boundary condition at the wall for the
hydrodynamic equations of continuity and con-
servation of momentum.

The actual thickness of formation at r =R,
however, is determined by the boundary condition at
the vapour-liquid interface, expressing that the
liquid normal stress equals the surface tension,
caused by curvature of the vapour-liquid interface.

This process of liquid microlayer formation has
been discussed by Zijl [22, 23]. A modified equation of
Landau and Levich [24] for the free coating problem
has been proposed in order to calculate the thickness of
formation h, and the radius of curvature r, in the
meniscus region,t see Fig. 1. The result of Landau and
Levich is:

()

g

n . 2/3
h0=1.333(vkc) -

The expression to determine r,, is given by:
d%h
dx? .. RN,
O'M“’“"*amzp —-Rx+3 E x* 1, (6)
()] |
where the term in the RHS of (6) {the pressure
caused by system acceleration) replaces the term pgx
(the pressure caused by gravitational acceleration) in
Landau and Levich's [24] result. Integration of
equation (6) results in:

dh
dx ol R\
W: L -Ré.,.\'2+2(—R—) =1 (7
r+(m) ¢
dx
The value of x where dh/dx = 0 is given by:
3
( ,b,c) if <1
folab,c) i Td%e
x = flabc)= 4’ (8a)
»l@bc) if =1,
Solabe)i 27a%¢
where
f@(ﬂ,b,c)

b ¢ 173 1 bs 1 b3 1/2711/3
e — —_— B
3a T (a) {2 27a%¢ (4 27a2c’) ]
A\ 1/3 3 1 3 127143
G L —(4— b 8b)
a 2 27a%¢ \4 27a%c

+The analogy between the formation of a thin liquid
layer beneath a growing bubble and at a moving plate has
been suggested independently by Professor G. A. Sparen-
berg of the Groningen State University during a meeting of
the Dutch subgroup “Two-phase flow™.
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Fi1G. 1. Rotational symmetric vapour bubble growing at a superheated horizontal wall. On the left the
thermal regions and on the right the hydrodynamic regions are indicated.

and
folabe) = — 3 + Ecosl:1 arccos(l - 27a2€>:|
= 3a 3a |3 2b°
+ b sin[l arc cos(l - 2-712£>J (8c)
3a 3 2b3

In these expressions a = 2(R,/R.)?* b= —R, and
= 2a/p.
Substitution of (8a) into (6) results in the required
expression for r,, = 1/(d*h/dx?*)4pax= o'
C
pom e ©)
f(3af +2b)

According to Groenveld [25] the mean radius of
curvature r, is best approximated by ry = 3r,,.

In a binary mixture, the experimentally de-
termined microlayer thickness turns out to be more
than two times thicker than the value predicted by
expression (5), see Section 5. This so-called “water
paradox” has been explained quantitatively by
Groenveld [25], who showed that surface tension
gradients along the meniscus (see Section 3), en-
abling the interface to support tangential stresses, result
in an increase of the value for hq by a factor of 2.753.

After formation of this layer at r= R, the
thickness decreases for two reasons:

(i) Especially in the triple interphase region at r
= R, the vapour-liquid interface is curved. The
associated surface tension force sets the liquid into
motion and drives the liquid out of the layer. This
results in a decrease of thickness.

(ii) Since the temperature of the microlayer is, in
general, higher than the temperature of the vapour, a
heat flux flows from that layer to the vapour-liquid
interface, causing vaporization of liquid. The vapour
produced in this way is an important cause of bubble
growth and is also a reason for the decrease in layer
thickness.

Under the assumption that the Bond number
pyh?/c < 1, the following equation, accounting for
these two effects has been derived by Zijl [22, 23]:

ch 20 h3é*h g
Sl 4 (10)

where the first term in the RHS accounts for the
effects mentioned in (i) and the second term in the
RHS for the effects in (ii). With the auxiliary
conditions that at r= R, h=2y/y, and 0oh/cr
=tana, and at r=R, h=h, an approximate
solution is presented by Zijl [ 32] for the dry area radius
R,(t)asafunction oftime. From thisresult it is observed
that in water, boiling at subatmospheric pressures, the
first term in the RHS of (10) may be neglected with
respect to the second term in the RHS for not too low
valuesof the “slip viscosity” 5. Furthermoreitisderived
that R; < R_during the time that R is growing.

In the deviations of (5,...,10) steady Stokes flow
and negligible gravity has been assumed. As has been
pointed out in the introduction, gravity may result in
a Bénard instability. However, in almost all cases the
Rayleigh number is smaller than the critical Rayleigh
number Ra, = 27n%4 ~ 657 for this case.

Since, as will be shown in Section 2.2., evaporation
takes place at r = R_ at a higher rate than at r = R,
there is a vapour shear flow from R, to R, setting
the film into motion. In addition, in a binary system
there is a concentration gradient at the
vapour-liquid interface resulting in a gradient of
surface-tension in the direction from R, to R,. Also
this gradient sets the film into motion. Such a flowing
film is unstable and may break up. This effect is damped
by surface tension.

A third cause of instability has been reported by
Mesler [26], who showed the existence of ebullition
of small vapour bubbles in the microlayer.

In the following only stable microlayers will be
considered.
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2.2. Heat transport in a stable liquid microlayer

In this Section the formalism of fractional calculus
will be used, see Oldham and Spanier [21].

Let us consider what happens at a prescribed plate
r from the axis of symmetry of the bubble. At a
certain time r, after start of bubble growth, the
bubble covers the place r and a microlayer is formed.
This time is determined by the implicit relationship:

RAt)=r (1)

Since the temperature of the vapour at the interface
Ty (2) is in general lower than the temperature of the
wall T, and consequently also of the temperature of
the liquid microlayer at the moment when it is
formed, heat will start flowing from this layer to the
vapour-liquid interface. According to Oldham and
Spanier [21] the heat flux at the (plane) interface at
place r equals:

0 r<t,
1/2

—pea’? ————[Ty(t)—T,},

12
d(r—t )42 a2)

qault) =

Lt > 1,.

In principle, equation (12) is only valid not too far
from r = R, where the penetration thickness for heat
diffusion is small compared to the microlayer
thickness. In that region the highest instantaneous
heat flux occurs, consequently this region contributes
dominantly to the vapour production. For that
reason it is approximated that equation (12) is valid
over the whole surface from r =0 to r = R_. In this
way also the existence of a small dry area is
neglected.

From expression (12) the total heat flow to the
vapour-liquid interface can be calculated by in-
tegration over the wetted surface:

Ret)

d1/z

00 = __znpcal/'Zj::O ra*[‘t-;tr(r)]wz

x [Ty(t)—T,]dr. (13}

Only when R, > 0, ie, when the bubble covers
new hot liquid in the microlayer, can equations (11}
and (13) be combined, resulting in:

i

Oult = —2npca'’? J‘ R.R.()
=0
172 7
% WETMU) -T,lde,. (14)

The heat flow Q,, causes evaporation of the liquid
microlayer, consequently a flow of vapour mass Q,,/!
“blows” into the bubble. Since the liquid is much
denser than the vapour, the bubble volume increases
much more (a factor p/p,) than the volume of the
microlayer decreases. When vapour production at
the bubble cap is neglected it follows from (14) that
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the growth rate of the bubble volume is given by:

V)= —n P i [ dR3(1,)/de
pxr[ Jtr=0
dl/Z
——[Ty(t)— T, ] dt,. (15
X d([_tr)l/z[ M() M] ( )

When, from the hydrodynamics in the liquid, the
coordinates of the vapour-liquid interface at the
bubble cap are known as a function of time (see
Section 5) V(t} and R,{t} are known and equation
(15) has to be used to determine the unknown
vapour temperature at the interface T,,(r). In order
to do this, an approximation is introduced.*

It was argued before that the most important
contribution to vapour production comes from times
shortly after initial formation of the microlayer, i.e.
for times ¢t =z f,. During this relatively short time
interval, the vapour temperature does not change so
very much and may be assumed to be constant. With
the property d'21/de'? = 1/(m)"*  and  the
Riemann-Liouville definition of fractional integrals
[21], equation (15) is transformed to:

pe - d—l;,’_

V{{)‘—’:"“?I;}:zﬁ a}‘j‘l—z‘

% {[Tult)— T,]dR2 ()t}

OF, as an approximation:

. pc 12 dfl,'Z d
l/(t)n‘—nma de= V2 dr
This equation has to be transformed in such a way
that it can easily be used in a standard routine for
numerical integration of sets of ordinary differential
equations. For that purpose, use will be made of the
composition rule  dY3f =d V2 df + F{0)/(rt) 2,
where f(0) = [ T,,— T, ]R? is assumed to be equal to
zero. In this way one yields:

‘{[TM(I)"’Tw]RE}'

d—]’z .

pol 1 V. (16)

Ty() =Ty = — 2 — =
ul)=T, pea R de~ V2
Taking the square of this expression and differen-
tiation with respect to time results in:

d . (pdV U A g
o (M=) =(—~) (17

pc 2nia de V2 g
where the composition rule dd Y2 = d'/?f has been
applied.

Now use will be made of the Griinwald definition
of fractional derivatives and integrals [21]:

a9f . (l)*“ 1
—— = lim |~
dtq N+ o N r(“Q)

"TG-q) ot
x ,Z'o XTI f(fﬂ*l;l-)« (18)

*Equation (16)can be derived exactly from equation (15) by
more complex analysis.
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Substitution of equation (18) for = —% and g =1
in the RHS of (17) results in:

d
o [R(Ty=T)1°

1 pul

=3

n°a pc

[(V®+E][V()—-E,], (19.1)

1. " rg+h L0 ot
E,=—7 lim ) r(j+12) V(t—j—ﬁ>, (19.2)

N—oow j=1

1 NIT(G—4) ( t
=-—= li Vit—j—). (19.3
E, Ixl/2 ,}IPL j; r(+1) t jN> (19.3)

As a numerical approximation, the number of N
~1 memory points for ¥ will be taken finite. For the
computation of the memory series (19.2,3), the values
of V have to be stored at equidistant time intervals.
However, the integration of equation (19.1) may be
performed with any subdivision of these intervals,
required in the numerical integration procedure.

In the general case that vaporization also takes
place at the bubble cap, the growth rate of the
bubble volume V in equations (15)—(19) has to be
replaced by the volumetric vapour flux T',,, denoting
the volumetric rate of vapour production at the
vapour-liquid interface in the evaporating
microlayer.

3. COMBINED EFFECT OF VAPORIZATION
AT MICROLAYER AND BUBBLE CAP
3.1. The thermal boundary layer at the bubble cap

The process of heat transfer to the bubble cap is
much harder to describe than the heat transport
process to the vapour-liquid interface in the evap-
orating liquid microlayer. This is due to the
following:

(i) The bubble cap is not flat, but curved.

(ii) Since the bubble cap is moving, heat trans-
port does not only take place by conduction, but
also by convection.

(iii) The bubble is surrounded by a non-uniformly
superheated liquid.

Because of these reasons the solution around the
bubble cap will have a more approximate character
than in the case of the evaporating microlayer.

The heat transport equation in rotationally sym-
metric spherical coordinates equals:

0 0 ug 0
—tu—+——|T
ot or r o6
02 20 1 & 1 a
=a 6?"’ —ECOtg% T. (20)

ror * r? 062 * r

When there was no buoyancy force, the bubble
would never depart from the wall and always kept
its initial hemispherical shape. As an approximation
this situation will be used for the solution of
equation (20). In that case the terms with 8/06
cancel.

It is convenient to transform to a new coordinate
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z = r—R(t) moving with the velocity of the hemi-
spherical bubble cap. In this coordinate system the
spherical symmetric equation (20) becomes:

2 or
a T GerRy e T\ ’ﬁ‘a—) @n

8T z(z+2R) , 0T a(alr

In a very thin boundary layer z/R — 0 and equation
(21) reduces to the heat-diffusion equation:

oT [T 2 T
a Nez2 "R o )

(22)

According to Oldham [27], the solution of (22) for
the heat flux at the hemispherical bubble cap in the

direction to the vapour-liquid interface equals:
172

qr(t) = —pca'? —= [To(t)— T, ]

Tr(t)-T,

Strictly speaking, expression (23) is only valid for
timeindependentradius R and temperature T, (6)at the
edge of the thermal boundary layer. However, since
T, (t) changes slowly with respect to T (t), the range of
validityfor (23)isassumed to be approximately valid for
varying T,.

In a paper by Maron-Moalem and Zijl [17], it is
proved that for large bubbles, occurring in water
boiling at subatmospheric pressures, the second term
in the RHS of equation (23), i.e. the curvature term,
may be neglected. However, it is also proved there
that the second term in the LHS of equation (21), i.e.
the radial convection term, has the same order of
magnitude as the first term in the RHS of (21).

In order to account for this, equation (23) (with
negligible curvature term) is “corrected” by adding a
factor 3'/2, see Introduction.

1/2

det/?

In case of a free vapour bubble under zero gravity
conditions, in the mode of asymptotic diffusion
controlled growth, where Ti(t) = T,, equation (24)
just reduces to equation (1), corrected with the factor
3172 obtained by Birkhoff et al. [8]. This result is
obtained applying the heat flux requirement g,
=p,R and the semi-derivative of 1, d%/?1/d¢'/?
= 1/(mt)"/2.

From expression (24) the total heat flow to the
vapour-liquid interface can be calculated by in-
tegration over the surface of the bubble cap:

qr(t) = —3'72pca'’

[Te)-T.]. (24

/2
Qxl(t) = ——2713”2pca1/2j R2(0,1)
8=0
1/2
X sin 0 e [Tr(t)— T, (6,1)]d6.
When vapour production at the evaporating micro-
layer is neglected, the amount of vapour, caused by

vaporization of liquid at the bubble cap, blows up
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the bubble. The volumetric growth rate V = Qg/p,!
equals:

X pc T2
Vit)= —2n31’2-a‘/2J R%(0,1)
ol 0=0
1/2

% 8in 0 —— [ T(t)— T, (0, 1)] .

o 25)

When T, (6,1) is also a slowly varying function of
60, or when the bubble shape is almost spherical, the
following relationship holds approximately:

1/2n
J R?*(6,1)sindT, (0,r)d6

o

1/2n
J R*(0,t)sin0d0
0

1/2

1/2n
g f RZ(O,t)sinBWTw(B,t)dﬂ
0

= di— 2 1/27
J R*(6,1)sin0do
0
With the composition rule for f(0) =0, d~*2d*?f
= f it is observed that this is exact for T,
independent of 6.
Substitution of this approximation into expression
(25) results in:

) pe d?
V(t)= =312 "= a'?A(t)——
{t) pvla ()d[”2

x [Tet) =T ()], (26)
where the surface of the bubble cap is given by:
{2
A(t) =2n f R*(8,1)sin 0 do, (27)
0=0

and the mean temperature at the edge of the thermal
boundary layer is given by:

_ 2n ™2
T (1) =—~f R(0,1)sin 0T.(6,1)d6.  (28)
A1) Jo-o
Expression (26) can be rewritten as:
- 0.1 d=12 V()
Tr(O) - Tt} = (29)

T 312pcql2 dpm 12 A

In the same way as in Section 3.2, the Griinwald
definition of fractional derivatives and integrals (18)
can be used to transform (29) into expressions
suitable for numerical integration. The result is:

d - 1 [pd\?
- —T )32 = ( t
de (Te= 1) 6n2a\ pc )

Vo) 44
rig L _G 30.1
8 [A(t) " G"][A(t) m]’ o

1o NIy v
— - ., (30.2
G n'? Nljnw j§1 FG+1) <A>ll‘f“/"’” o

Nt e a7
G lim Y U 2)<v> . (30.3)
A )= junn

m—2nl/2 Novw jo1 (]_+_1)

In the general case that vaporization also takes

place at the vapour—liquid interface in the evaporat-
ing microlayer, the growth rate of the bubble volume
V has to be replaced by the volumetric vapour flux
Iz, denoting the volumetric rate of vapour pro-
duction at the vapour—liquid interface of the bubble
cap.

3.2. The vapour temperature

It is now assumed that the pressure in the vapour
is homogeneous in space and only a function of time.
When it is furthermore assumed that the vapour is in
thermodynamic equilibrium with the adjacent liquid
it follows from Clapeyron’s law that (in a pure
system) also the temperature of the vapour T, is
homogeneous in space, ie. Ty, = T = T,. The as-
sumption of homogeneous vapour temperature has
been discussed by Kenning and Toral [28], who
considered deviations from homogeneity in order to
explain the occurrence of surface tension gradients
along the vapour-liquid interface in a pure system.

Since V = I'y,+Tg, where V is known from the
hydrodynamics of the problem, see Section 5, this set
can in principle be solved for the two unknowns T,
and Iy, (or Tg).

In a similar way as described in subsections 2.2.
and 3.1. equation (16) can be transformed to an
equation suitable for the numerical calculation of
I',4(t). Equation (30) is used for the determination of
T.(t). However, it turned out that for numerical
integration many timesteps were required, resulting
in an intolerably high computation time. Also when
equation (19) is used for determination of T,(t) and
equation (29) for the determination of T',,(t), the
same difficulties can be expected. For that reason
another reasonable approximation will be
introduced.

The temperature calculated with expressions (19),
where V is the real bubble volume, is defined as T;}.
In the same way, the temperature defined by
equations (30) is called Tg. In general T} and T are
only parameters which do not represent a physical
temperature. Only in the limiting cases where the
bubble cap or the microlayer do not play a part T}
= T,, respectively TF = T,. Now an expression for
T., continuously connecting both limiting cases, will
be derived.

In subsection 3.1. it is derived that:

1 dAl'Z Q

=T —iri’zp('aﬁdf]’f:‘li'

(31)

If the heat flux ¢y in the evaporating microlayer
were homogeneous the following expression would
be obtained instead of (16):*

t d'? 0

Y pea'? dt™ V2 nRE
It follows from (31) and (32) that the mean heat flux
equals Q/(3'24 + nR2),and consequently the following

Tﬁ = (32)

*In [23] it is shown that replacement of R 2 by 2zR2 in
equation (32) results in a better approximation.
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expression is approximately true:

324T, 4 7R2T,

v 3124 +-nR?
B 1 d—I’Z Q
T pea' ATV 31244 1R

(33)

Initially after start of bubble growth contraction of
the bubble foot does hardly take place, i.e. the bubble
keeps its hemispherical shape and the ratio 4/nR? is
constant. In that case it follows from (31-33) that:

132A(TE+T,)+7RATE+ T,

) 3724 4+ 7R2 ‘
As an approximation, expression (34) is used to
calculate T, from the values of T} and T, obtained
by the numerical integration of (19) respectively (30).
In this way a very efficient numerical algorithm has
been obtained.

-

(34)

b

4. EXTENSION TO BINARY MIXTURES

In view of practical applications (heat exchangers,
nuclear reactors), great efforts have been made to
increase the maximum nucleate boiling heat flux, e.g.
by an elevation of pressure and by the introduction
of forced convection, both in combination with a
subcooling of the bulk liquid. Maron-Moalem et al.
[6] proposed the idea of nucleate boiling at a
liquid-liquid interface of two immiscible liquids.
Bubble generation occurs then in close proximity of
the heated solid wall and the onset of film boiling at
the wall is prevented.

Another idea is to use a miscible binary mixture.
At low concentrations of the more volatile com-
ponent, the bubble frequency has been increased in
combination with a diminishing tendency for bubble
coalescence. The aspect of higher bubble frequency
will be discussed in this subsection.

When a more volatile component A is added to
the liquid B, both in the liquid microlayer and at the
bubble cap, diffusion of this component to the
vapour—gas phase takes place. Diffusion at the
bubble cap has been treated by Zijl et al [11],
consequently only diffusion in the evaporating
microlayer will be treated here in more detail.

According to the theory described in Section 2.2.,
the total heat flow Q to the vapour-liquid interface
satisfies the following expression, see equation (16):

-1,2
WRATy-Ty) = - 4 €

/)('(,ll 2 Hf_‘_ﬁ (35)

In a similar way the following expression for the
total flow Q. of the more volatile component can be
derived:
1 d~'2Q,
Both by vaporization and by diffusion of the more
volatile component into the bubble, the volumetric

flux Iy, of vapour—gas mixture into the bubble
equals:

TRUCy~C,) = (36)

where p,, is the density of the vapour in the
vapour-gas mixture and p,, is the gas-phase density
of the more volatile component in the mixture. It has
been proved by van Stralen et al. [29] that p,,l,
=p,l, where p, and [ are the vapour density,
respectively latent enthalpy of vaporization in a pure
system under the same conditions. It has been
proved by Maron-Moalem and Zijl [17] that C
= p(M /Mp)X and p,, = p,(M,/Mp)Y, where X
and Y are mole fractions of the more volatile
component in the liquid and the vapour—gas mixture
respectively.

Consequently, expressions (35,36) result in the
following equations:

A odTier,
mRiTy—T,) = —;cgalﬁ W]/—ZM‘, 37)
pip,  d7V(Xglw)
RN Xy~X,) = —m—dan_
(38)

In the derivation of (38) use has been made of
Dalton’s law:
_pT o P
pu(TR) M poo

After linearization of (38) by putting

M*

A7 13Xy Ty )/de ™% = X d ™20y /de 12

(see [11] for the validity of this linearization), the
following expression is found after elimination of Iy,

from (37, 38).
a\'? pt c
(08

D P !
Xy—X, = X.. (39)

TR g
D ool M w)

It has been derived in [11] by use of Clapeyron’s
and Raoult’s laws in linearized form, that for the
vapour—gas pressure p,, which is again assumed to
be homogeneous in the whole bubble, the following
expression holds:

Pl
Pe= P =0 (Tu—T)+PHT) Xy — X). (40)
s
Substitution of (39) into (40) results in:
Pl
Po—Pe = (T¥-T), “n
T
where T,* is defined as:
LY~ TL={0+yp)(Ty—T)—yul(T,—T) (42)
and vy, is defined as:
a 1/2 AN2 T
<‘_> p—v E — Po Xao
D w/ 1Pl
Tm(Thy) = (43)

a 1/2pAC :
t+l =) = -(T,-T,
(3) %@t

©
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Combination of (37) and (42) results in:
nRUT*~T,)
_ [+ pwdT]pd 47120,

12 d['—]'Z K

(44)
pca
where 7,/(T*) can be determined algebraically by
expressions (42, 43).

In the same way it can be proved that in a binary
system equation (29) has to be replaced by [11]:

T T = [+7=(TH)]pd 4712 Ty (45)
R™ 4 = 7 32pcqliz 172 ’

A

o

where equation (41) is the same and in equations
(42,43) yy = 7r Ty~ Tg and T,,~ T, (— means:
has to be replaced by).

Since in a pure system expression (41) remains
unchanged, with T* = T,, the description of the
binary system has been reduced to the description of
a pure system by replacing ¢ in expressions (19), (30)
by ¢/(1+7,,) and ¢/(1 + ) respectively.

It is noteworthy to mention here that since in
general T, # T,, the temperatures and concen-
trations at the vapour-liquid interface in the micro-
layer and at the bubble cap are not equal, ie. Ty
# Tgs Xu 7 Xg, sec equation (42). This fact will
result in gradients in surface tension over the
vapour-liquid interface in the meniscus region,
leading to additional flow around the bubble, see
Kenning and Toral [27]. In Section 2 this effect has
been accounted for by Groenveld’s correction in
expression (5) [25].

5. CONVECTION AND HYDRODYNAMICS
OF THE BULK LIQUID

If it is assumed that the vapour, produced at the
vapour-liquid interface in the evaporating micro-
layer, arrives homogeneously at the bubble cap
R(8,1), the vapour velocity at r= R(f,t) equals
I',,/A. The normal displacement of the bubble cap
per unit of time equals the normal velocity of the
liquid at the bubble cap (u-m),_x. In this way the
local heat requirement at r= R(f,t) equals gy
=p,[(u-n),.g—T/A] and the heat flux for r > R
(ie. for z > 0) is given by, see Carslaw and Jaeger

[291:

ZZ
3121 f exp[ - 4a(t’-t)]

pca”znm vo (t’—t)”z
x [(u-n),cg—Ty/A],=dr’.  (46)

[,/A can be determined by expression {24) and
(u-n),- follows from the hydrodynamic equations.
The thickness z = (0, t) where g(z)/qg = 5%, can be
determined numerically and the bulk temperature at
that place from the bubble cap is considered to be
equal to T,(0,1), needed for the solution of ex-
pression (30) with the aid of (28).

In the bulk liquid, that is the liquid at the edge
and outside the thermal boundary layer, temperature

q(z) =

gradients are not so large and heat transport is
considered to take place only by convection. In this
way equation (20) reduces to:

¢ e uy 0 DT
—+U—+—— |T=-—-=0.
ot ar r ¢f Dt

Equation (47) expresses that the temperature does
not change along a streamline. Consequently, when
the initial temperature distribution is prescribed, the
temperature field for t > O can easily be determined
when the flow field in the liquid around the bubble is
known.

The determination of this flow field and con-
sequently the coordinates of the bubble boundary
have been described in detail by Zijl [18,22] and
Joosten et al. [19]. Consequently only a short
summary will be presented here:

From a hydrodynamic point of view the heating
surface is considered as a plane of symmetry between
the bubble and its surrounding flow field and a
“mirror” bubble and “mirror” flow field. In this way
the normal velocity condition at the wall (u-n),, = 0
is satisfied automatically. The no-slip condition at
the wall does not play a part since for the large
vapour bubbles under consideration, the liquid
moves smoothly over a very thin viscous boundary
layer, which does not affect the bulk flow and the
bubble shape. The contact angle only plays a part in
the evaporating microlayer, see Fig. 1.

In addition it is assumed that the influence of the
tangential stress condition at the bubble boundary is
only limited to a thin hydrodynamic boundary layer
around the bubble. For a pure system this is a
reasonable assumption, based on the absence of a
wake region behind a non-translating bubble. For a
binary system, however, the validity of this assump-
tion is questionable since large gradients in tangen-
tial stress, introduced by gradients in surface tension,
may cause additional low phenomena.

Under the above mentioned restrictions, potential
flow theory may be applied in the bulk liquid.
Combination of the Bernouilli equation for the
liquid pressure, the Laplace equation for the surface
tension and expression (41) results in the following
boundary condition for the potential equation for
the velocity potential V¢ = 018, 19, 22]:

2 )]
o 2 \er Eéﬁ)
%) —p,
O Tp—Ty— g

1 R\ 1 R
142( ) == =
R a0) R 26

[ 6R)2
L4 —
R 06

1 éR cosf 1

I 8R\*7"?
e
R 80

(47)

Rcos@

Pl

o1

p R

(48)
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The term g(p—p,)R cos 8 represents the buoyancy
term. This is the only place where this term occurs
and deviations from the spherical bubble shape, i.e.
contraction of the bubble foot and ultimately
departure, are only due to this term.

The solution of potential equation V2¢ =0,
satisfying (u-n),, = 0 equals

1
Y alr) T P, (cos B).

k=0

¢(r,0,1) =

As a numerical approximation, this series is cut after
N terms. Instead of the N unknown expansion
coefficients [a,(¢)]224, N values of ¢, [¢,(8)] 5t at N
discrete angles 6; (the so-called collocatlon angles)
can be used.¢;(t) = ¢[R(6;,1),6,,t]

3 N1 P,(cosB)
Z {[R Gl,t)]2k+1} k(t)s

i=O()N (49)

If boundary condition (48) is only used at these
prescribed collocation points, a set of N ordinary
differential equations is found for ¢,(z).

The condition that the flow velocity equals the
displacement rate of the bubble boundary is ex-
pressed by:

6R ¢
ot or

1 OR é¢

— at r = R(0,1).
R? 0 o0 &t RO

(50)

If for every value of 0 there is only one value for
R(8,t), also R(0,tr) may be expanded in even
Legendre polynomials:

8

R(9t=2

()P, (cos 8).

In the same way, this series will be cut after N terms
and instead of [b,(£)]i=4 the set [R;(1)]75" will be
used, where b, and R are related by the linear
relationship:

N-1

Z [P, (cos 6;)] by ()

k=0

Ri(t)=R(0,,1)= (51)

when boundary conditions (50) is only satisfied at the
collocation angles 6,, a set of ordinary differential
equations is found for R;(t)

It is noted that the y; = cos§; are chosen as the
zeros of a Legendre polynomial. Only then con-
vergence for N — oo can be guaranteed [22]. The 2N
ordinary differential equations, obtained in the way
described above, combined with the two thermal
ordinary differential equations (19, 30), result in a set
of 2N +2 coupled first order ordinary differential
equations. This set can easily be solved by numerical
standard routine. In the examples presented here an
Euler method (without corrector) has been used. For
every timestep the algebraic linear sets (49, 51) are
solved by a Crout routine. In the examples presented
in Section 6, the computation time at the Burroughs
B7700 of the Eindhoven Technical University never
exceeded 10 min.

6. THEORETICAL PREDICTIONS AND
COMPARISONS TO EXPERIMENTAL RESULTS

6.1. The numerical method

The efficiency of numerical solution by the sets of
equations (19), (30) will be first discussed for the
simple case of a spherically symmetric vapour bubble
in an initially uniformly superheated infinitely ex-
tended liquid in the absence of gravity. In that case only
one term in the series (49), (51) is needed and the set
(48), (50) reduces to the well-known second order
Rayleigh equation [11], presented here as a set of
two first order ordinary differential equations:

dR(t) . -
—— = R(1), {52.1)
de
3 Pl %
dR() iR +pTS[TR(t) g PR (522)
d R(t) '

Since no evaporating microlayer is present, only
equations (30) for Tg(t) have to be solved simul-
taneously with expressions (52) for R(t) and R(t). In
this case V/A =R and T, = T,. S(t) is defined as
S(t) =[Tp(t)—T,]?% so that TR(t)~T, in (52.2)
equals T,, — T,— S(¢)*/%.

The following set of equations is obtained in this
way:

where in this simple example Y = (R, R, S).

In order to obtain a numerical solution, equi-
distant discrete timesteps At, are chosen and the
time ¢ equals NAt,, N=123,...,00. At these
timepoints the values R[(N—j)At,], j=1,2,...,N
—1, needed in memory series (30.2,3), are stored. For
the integration from (N — 1)At, to NAt,, the interval
At, may be subdivided into convenient timesteps t,
< t,; this is particularly useful in procedures with a
self-finding timestep.

In this and further examples presented in this
paper, a simple Euler method has been used:

Yy = Yy_, +A1, F(Yy).

In this way the set (52), (30) has been solved for a
free vapour bubble, in water boiling at a pressure p,,
of 20.28 kPa, see Fig. 2. R, has been calculated with
At, = At, = 40ps.

R, has been calculated, initially with half these
timesteps, but after N = 50, 100, 150, etc. the steps
are doubled and the values of R at memory places no
longer needed have been skipped. In this way the
computation time has been decreased more than ten
times. When the memory series are omitted com-
pletely, the approximation introduced in [18,19] is
found.

6.2. Dependence on initial values

Van Stralen et al. [31] present experimentally
determined bubble shapes and values of R.,(t) and
R (t) for pure water, boiling at 7.88kPa (Fig. 6 in
[31]). Corrected for the hydrostatic pressure of the
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F1G. 2. Water boiling at 20.28 kPa. Comparison between
the results of two procedures for the numerical calculation
of the radius of a spherical bubble and the vapour

superheating. The second, more economical, procedure
(subscript: 2) gives only slightly different results, ¢f. text.

25mm

t=6ms

l=30ms

column of liquid above the superheated wall the
pressure equals 10.38 kPa.

For this bubble, photographs, taken from a high
speed motion picture are presented in Fig. 3. The
numerically determined bubble shapes, where 3
collocation points have been used, are shown in Fig.
4.

Figure 5 shows R.(t), R(t) and T,(t) for N =3
collocation points. Also, in case that R, > 0, the
meniscus radius ro(t), calculated with expression (9)
is presented.

Initially the liquid is motionless, ie. ¢(r,0,0) =0
and the initial bubble radius has been chosen equal
to R,=40T/p l(T,~T,). In this way the bubble
starts growing, see equations (52). The initial
temperature field has been chosen equal to:

{Tw+ (z/H(T,—T,), z<H

T.(2,0)= (53)

b zz21,

where T, = T,+ A8, and T,, = T, +0,.

Such a linear temperature field is justified by
experiments, see Section 6.3. The initial thickness H
of the thermal boundary layer above the superheated
wall has been chosen equal to 430 um in order to fit
the computed data to the experimental values.

Also experimental data for a water-2-Butanone
mixture have been presented by van Stralen et al.,
Figs. 8 and 9 [29]. The computed data are shown in
Figs. 6 and 7.

t:40ms

t=50ms

t=75ms

F1G. 3. Water boiling at 10.38 kPa. Photographs taken from a high speed motion picture, ¢f. Fig. 5.



413

Global numerical solutions of growth and departure of a vapour bubble

Trg] 4> “erep reyuownsodxs Smpuodsarioo
0) pauY u2ag sey 1ake] Arepunoq fewusy} 2Y) jo ‘H Sy syl ‘dwp uo souapuddep wi ‘O ‘sniper snosiwewr pue I ‘aunjeredure)
modea ***y/ y oner Yy ‘snipel pmuos My ‘snipes ojqqnq juajeainba pajenojes AfesuewmN BAY8E 0l 1B Buljlog 193ep y D1Y

SW '} e———————

o0 06 08 0L 09 08 oY 3 0z 01 0
Q1 Dcm a/ T H T T T T T T T 0
ok oigk o
ﬁ g EONMT ?..r.l......}l!ll.:l(a.é S’fc*lnfrl!fﬂku.“llllwgti.f! AADNﬁ
o = .mm:ma\.um?h?’“”hlw’lrlr d i —— 3.8
% = R S N
2 2, MUY oA
] / 3
ba, § 3
gl 0egk o hie3
5 i
i
ki
K
gzF  OvER 07
€N
WWEYD S H
LYBLS=er
sk cseb wigofov {0s
HSEET=D
¥ SYBLIES]
3% 8603 %Y
layepm
ogl  ose 08

450

ww

HMT Vol. 22, No. 3~E



414

coltocation angte 9‘

7

W. Zi, F.J. M. Ramagers and S. J. D. Van StrRALEN

{axis o
i

S——

f symmaeirie

5}

Water

."case‘= 0908

]

Fia. 5. Numerically calculated bubble profile in water boiling at 10.38kPa, ¢f. Figs. 3 and 4. Initial
bubble shape is hemispherical, corresponding with a small meniscus radius.
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FiG. 6. Water-2-butanone, (X, = 001} boiling at 9.83kPa. Numerically calculated equivalent bubble
radius, R,,, contact radius, R, ratio, R /R, vapour temperatures, Ty and T,,, and the meniscus radius ro,
in dependence on time. The vapour temperatures Tg and Ty, are calculated from equations (30) and {19},

respectively.
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F1G6. 7. Numerically calculated bubble profile in water—2-butanone (X, = 0.01) boiling at 9.83kPa, ¢f.
Fig. 6. In comparison to water (Fig. 5), bubble growth rate is slowed down, bubble departure radius and
time are decreased and the ratio of the initial meniscus radius to the bubble radius is increased.
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F1G. 8. Experimental temperature profile in the thermal boundary layer for water (7,, = 321.0K) and for
the mixture water—2-butanone (X = 0.01, T, = 331.6 K), in absence of bubbles.

6.3. Measurements of the initial temperature field

In the same boiling apparatus as referred to in
[30] temperature fields were measured without
occurrence of a bubble, both in pure and binary
mixtures.

The temperature in the thermal boundary layer
has been determined by a thin thermocouple, which
could be moved up and down by a micrometer. The
temperature of the bulk liquid was determined by
three fixed thermocouples.

The results are plotted in Fig. § for a pure and a
binary system. The difference in thermal boundary-
layer thickness between the pure and the binary
system may be attributed to the fact that in the
binary mixture the liquid is stirred in order to obtain
@ homogeneous mixture. The measured results are
independent of the waiting time.

In Fig. 9 a temperature profile is measured and the
saturation temperature is plotted as a function of the
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lent bubble radius, R,,, contact radius, R,, and ratio,
R,/R.,, in dependence on time, ¢f. Fig. 11.
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F1G. 11. Water boiling at 9.60 kPa. Numerically calculated equivalent bubble radius, R,,, contact radius,
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F1G. 12. Water. Theoretical initial thickness of evaporation
microlayer in dependence on time for R, > 0, ¢/ Fig. 11.

vapour temperature, T, and meniscus radius, ro, in dependence on time. The conditions

o Fig. 10.

6.4. Pure water, boiling at 9.60kPa

Figure 10 shows the experimentally determined
values of R, (t) and R (t). Figure 11 shows the
computed equivalent of Fig. 10, including a plot of
rolt) for R, > 0 and of T,(t). Figure 12 presents a plot
of hy(t) for R_> 0. In Fig. 13 the temperature field
and bubble shape are shown for short times after
bubble formation. Figure 14 shows that initially
R.(t) ~t.

Figure 15 shows the hypothetical case that there
would not be evaporation in the liquid microlayer.
Figures 16 and 17 show the same bubble, however,
growing with lower superheatings. From Figs. 15-17
it is observed that departure time and radius
decrease considerably when less superheat is
available.
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F1G. 13. Water boiling at 9.60kPa. Numerically calculated isotherms in the liquid surrounding a growing
vapour bubble.
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Fi1G. 14. Water boiling at 9.60kPa. Numerically calculated initial equivalent bubble radius, R

eq» and

vapour temperature 7T, in dependence on time. The calculated bubble shape is hemispherical.
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F1G. 15. Water boiling at 9.60 kPa. Numerically calculated
equivalent bubble radius, R.,, contact radius, R,, ratio
R./R.,, bubble temperature 7, and meniscus radius r, in
dependence on time. The contribution of evaporation
microlayer is omitted. Cf. the results of Fig. 11, where the
evaporation microlayer is taken into account.

Finally, Fig. 18 presents the same bubble under
zero gravity conditions; the bubble keeps its hemi-
spherical shape.
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SOLUTIONS NUMERIQUES GLOBALES DE CROISSANCE ET DE
SEPARATION D'UNE BULLE SUR UNE PAROI HORIZONTALE
SURCHAUFFEE DANS UN LIQUIDE PUR ET DANS UN MELANGE

BINAIRE

Résumé—On étudie par des méthodes numériques globales la croissance et la séparation de bulles de
vapeur sur une paroi horizontale surchauffée. La forme intégrale de I'équation de transport de la
chaleur a été résolue par des développements en série obtenus par la théorie des dérivations fractionnaires.
La méthode de colocation orthogonale est appliquée a ’écoulement potentiel autour de la bulle. De cette
maniére un systéme de huit ou dix équations différentielles est intégré par ordinateur. Les résultats, pour
des répartitions données de température initiale sont en accord quantitatif avec des résultats
experimentaux obtenus dans l'eau et des mélanges binaires aqueux en ébullition a la pression
atmosphérique.

GLOBALE NUMERISCHE LOSUNG FUR WACHSTUM UND ABLOSUNG
EINER DAMPFBLASE AN EINER HORIZONTALEN UBERHITZTEN WAND
IN EINER REINEN FLUSSIGKEIT UND EINEM BINAREN GEMISCH

Zusammenfassung—Das Wachstum und das durch Auftrieb hervorgerufene Ablgsen von Dampfblasen
an einer horizontalen iiberhitzten Wand wurden mittels globaler numerischer Methoden untersucht.
Die Integralformen der Wirmetransportgleichung wurden mit Hilfe von Reihenentwicklungen gelost,
die man aus der Theorie der partiellen Ableitungen erhalten hatte. Fiir die Potentialstrémung um die
Blase wurde die globale orthogonale Kollokationsmethode angewandt. Auf diese Art und Weise ist nur
ein Satz von acht oder zehn einfachen Differentialgleichungen vom Computer zu integrieren. Die
Ergebnisse, die sich aus vorgegebenen Anfangstemperaturverteilungen ergeben, stimmen quantitativ mit
experimentellen Daten iiberein, die durch Siedeversuche bei unteratmosphirischen Driicken mit Wasser
und wiBrigen bindren Gemischen gewonnen wurden.
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W.ZuL, F. J. M. RaMAKERS and S. J. D. VAN STRALEN

OBOBIEHHOE YUCJIEHHOE MCCIEAOBAHHE POCTA W OTPLIBA NMAPOBbLIX
MY3LIPLKOB HA IT'OPU3OHTAJILHOM TMEPETPETON CTEHKE B YACTON
)XUJIKOCTU U BUHAPHON CMECHU

Annorauus — C noMoiupio OOOGUIEHHBIX YHCICHHBIX METONOB HCCIENYETCs POCT M BbI3BaHHBI
MIaBYYECTbEO OTPBIB NAPOBLIX NMY3BIPHKOB Ha TOPH3OHTaNbHOW meperperoif creHke. MHTerpannubie
ypaBHeHHs MEpPEeHOCa Temna pelleHbl ¢ MOMOLUBIO PA3jIOkKEHHH B pAabl B paMKaX TEOPHH APOGHBIX
npoussoaxbix. i ONMCaHMS NOTEHUHANbHOrO OOBTEKAHMA MYy3LIPLKOB HCMOJB30BAICS 0006IIEH-
Hblii OPTOTOHaNbHBIH METOA KOJUIOKALHMA, 4YTO NO3BOJIWIO NPOMHTErPHPOBATH HA KOMIBIOTEDE
CHCTEMY TOJIbKO M3 BOCBMH MHJIM OECATH OOBIKHOBEHHbIX AuddepeHuHanbHbIX ypaBdeHuit. [Ipy
3a/IaHHBIX HAa4aNbHBIX paclpeaeieHHAX TEMIEPATYPbl NONY4YEHHbIE PE3YJIbTAaThl KOJIM4ECTBEHHO COIa-
CYIOTCS € IKCNEPHUMEHTA/IbHBIMH [AHHBIMH [UIS BOAbI W BOIHBIX OMHAPHBIX CMeCell, KUNALIMX NpH
ZaBJIeHHAX, HHXKe aTMOC(HEPHOTO.



