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Abstract-The growth and buoyancy induced departure of vapour bubbles at a horizontal superheated 
wall has been studied by global numerical methods. Integral forms of the heat transport equation have 
been solved by use of series expansions, obtained by the theory of fractional derivatives. The global 
orthogonal collocation method has been applied for the potential flow around the bubble. In this way a 
set of only eight or ten ordinary differential equaiions has to be integrated by computer. The results, 
following from prescribed initial temperature distributions, are in quantitative agreement with 
experimental data, obtained in water and aqueous binary mixtures, boiling at subatmospheric pressures. 

NOMENCLATURE 

a, = kjpc, liquid thermal diffusivity [m’/s], 
= (&/R,)’ in equation (9) [l/s*], 
expansion coefficient in series for 
velocity potential [m3 + 2k/~] ; 

A, surface of bubble cap cm”] ; 
b, = - #,, deceleration of liquid in 

hydrodynamic boundary layer at 
r = R,[m/s2], expansion coefficient in 
series for bubble radius [III] ; 

c, liquid specific heat at constant pressure 
[mZ/sZ IL], = 20/p in equation (9) [m3/sz] ; 

c, concentration of more volatile component 
A in Iiquid B [kg/m31 ; 

c 
DP’ 

initial bubble growth rate [m/s] ; 
diffusion coe%cient for more volatile 
component A [m’/sJ ; 

Em, E,, memory series in equation (19) [m3/s2] ; 

_f3 x = f, real solution of ax3 + bx2 -c = 0, 
continuous in a, b, c [ml, symbol for 
general function; 

2, 
expression for f when 4b3/27a2c < 1 [m] ; 
expression for f when 4b3/27azc 2 1 [m] ; 

9, gravitational acceleration [m/s’] ; 
G,, G,, memory series in equation (30) [m/s] ; 
h, thickness of Iiquid layer, especially 

of microlayer [m] : 

h 0y thickness of formation at Y = R, of 
liquid micro~ayer [ml ; 

ff, initial height of thermal boundary layer 
above superheated wall [m] ; 

4 integer number denoting collocation angle; 
J> integer number; 
Ja, = p~-l3~/p~l Jakob number; 

k, liquid thermal conductivity [kgm/s3 K], 

*Present address: Neratoom, P.O. Box 2244,2509AE Den 
Haag, The Netherlands. 
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integer number in series expansion for 
velocity potential; 
latent enthaIpy of vapori~t~on [mz/s2] : 
latent enthalpy of vapo~i~tion in 
gas-vapour mixture [mZ/sZ]; 
molar mass of more volatile component A 
[kg/kmolJ ; 
molar mass of liquid B and its vapour 
[ kg/kmol] ; 
unit vector normal to vapour-liquid 
interface; 
number of collocation angles, number of 
terms in Griinwald series (18); 
liquid pressure [kg/s’ m] ; 
vapour pressure [kg/s” ml ; 
partial vapour pressure of more volatile 
component A [kg/s2 m] ; 
liquid pressure far away from bubble 

[kg/s* ml ; 
= v/a, Prandtl number; 
heat flux [kg/s’], number denoting order 
of fractional differentiation in 
equation (18); 
heat flux at vapour-liquid interface in 
liquid microlayer [kg/s31 ; 
heat flux at vapour-liquid interface in 
bulk liquid [kg/s’]; 
total heat flow [kgm2/s3] ; 
total mass flow of more volatile 
component A [kg/s] ; 
total heat Row at vapour-liquid interface 
in liquid microlayer (kgm2/s3] ; 
total heat flow at vapour-liquid interface 
in bulk liquid [kgm2/s3] ; 
radial coordinate [m] ; 
minimum meniscus radius [m] ; 
mean meniscus radius [m] ; 
radial coordinate of vapour-liquid 
interface at bubble cap [m] ; 
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= yr*ATh3/av, Rayleigh number; 
critical Rayleigh number; 
bubble contact radius [m] ; 
radius of dry area [m] ; 
= (31//47r)“3, equivalent bubble radius 

[ml; 
= ggACh3/av, “salinity” Rayleigh number ; 
time elapsed since start of bubble 
growth [s] ; 
time at which bubble starts to cover 
solid wall at place r [s] ; 
absolute temperature [K]; 
temperature difference with respect to 
melting ice, increase in saturation 
temperature in binary mixture [K] ; 
absolute bulk temperature [K] ; 
vapour temperature in pure system [K] ; 
parameter characterizing excess pressure 
in bubble [K] ; 
temperature of vapour-liquid interface 
in liquid microlayer [K] ; 
parameter in equation (34) [K] ; 
temperature of vapour-liquid interface 
in bulk liquid [K] ; 
parameter in equation (34) [K] ; 
saturation temperature at pressure p, 

WI; 
temperature of superheated wall [K]; 
temperature at edge of thermal boundary 
layer in bulk liquid [K] ; 
mean value of T, [K] ; 
liquid velocity vector [m/s] ; 
liquid velocity in radial direction [m/s] ; 
liquid velocity in azimuthal direction 

[m/s]; 
bubble volume [m”] ; 
= R,- I’, radial coordinate along wall with 
origin at bubble contact radius [m] ; 
mole fraction of more volatile component 
A in liquid B ; 
mole fraction of more volatile component 
A at edge of diffusion boundary layer; 
mole fraction of more volatile 
component A at vapour-liquid interface 
in liquid microlayer; 
mole fraction of more volatile 
component A at vapour-liquid interface 
in bulk liquid; 
mole fraction of more volatile 
component A in vapour B ; 
= r-R, radial coordinate with origin 
at bubble cap, displacement of centre of 
spherical bubble due to buoyancy [m]. 

Greek symbols 

volumetric thermal liquid expansion 
coefficient [ 1 /K] ; 
vapour-liquid&solid contact angle in 
triple interphase region; 
volumetric salinity expansion coefficient 

[m3/k1 ; 

correction factor for heat removal in 
liquid microlayer in binary mixture ; 
correction factor for heat removal at 
bubble cap in binary mixture ; 
gamma function ; 
volumetric rate of vapour production at 
vapour-liquid interface in microlayer 

[m3/s] : 
volumetric rate of vapour production at 
vapour-liquid interface in bulk liquid 

[m3/sl; 
thermal boundary-layer thickness around 
bubble cap [m] ; 
liquid dynamic viscosity [kg/s m] ; 
= 2t7/h(Rd), slip viscosity at 

vapour-liquid-solid interfacial line 

[kg/s m’l ; 
azimuthal coordinate; 
= T, - T,, wall superheating [K] ; 
= Tb - T,, bulk superheating [K] ; 
= cos 0, azimuthal cosine ; 
liquid kinematic viscosity [m*/s] ; 
liquid density [kg/m31 ; 
vapour density [kg/m31 ; 
vapour density in gasvapour mixture 

[Wm31; 
gas density in gas-vapour mixture 

CWmm31; 
surface tension coefficient [kg/s’] ; 
= aJa2/C& characteristic time for 
transitional growth [s] ; 
liquid velocity potential [m2/s]. 

1. INTRODUCTION 

BECAUSE of its importance for practical applications, 
heat transfer from a horizontal heated wall to a fluid 
has been investigated frequently. One of the most 
interesting features in this configuration is the 
occurrence of buoyancy effects in the fluid. Buoyancy 
forces arise as a result of variations of density in a 
fluid subject to gravity. 

Well-known is the Benard problem [I], where 
density differences are caused by variations in 
temperature, i.e. Ap = --paAT. It has been shown by 
Rayleigh [2] that the so-called Rayleigh number Ra 
= gaATh3/av plays a dominating part in the stability 
properties of the BCnard problem: when Ra is larger 
than a critical Rayleigh number Ra,, the flow is 
unstable and heat transport by natural convection 
occurs. 

A comparatively recent development in the field of 
natural convection has been the study of fluids in 
which there are gradients of two (or more) properties 
with different molecular diffusivities. This is the case 
in a binary mixture and the variation in density is 
given by Ap = -paAT+pfiAC. The stability proper- 
ties of this system have been treated by Baines and 
Gill [3]. Their results show that both the Rayleigh 
number Ra, a so-called “salinity” Rayleigh number 

Rs = gfiACh3/av, the ratio of diffusivities D.itr and 
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the Prandtl number v/a determine the stability 
properties. For Pr = 10, D/a = lo-’ (i.e. salt in 

water), Baines and Gill [3] present a diagram 

showing the stability properties as a function of Ra 

and Rx In Section 2.1. the above mentioned results 
will be used. 

Another well-known buoyancy problem is nuc- 
leate boiling, where density differences are caused by 
liquid-vapour phase transitions, initiated in small 
cavities at the wall (so-called heterogeneous nuc- 
leation). In practical applications, boiling heat 
transfer is often more advantageous than heat 
transport by natural convection, since in the former 

case the periodic growth and departure of vapour 
bubbles causes forced liquid convection, which 
contributes substantially more to heat transport than 
natural convection. 

Unfortunately there is an upper limit in the heat- 
transfer rate. At a sufficiently high driving tempera- 
ture difference, the number of bubbles at the 
superheated wall becomes so large that these vapour 
bubbles coalesce and form a coherent vapour film, 
insulating the wall from the liquid. These dry areas 
result in hot spots and eventually in deposition of 
salt, which leads to damage of the wall. For that 
reason investigations with the purpose to increase 
the peak flux are of great practical importance. In 
this paper special attention is paid to bubble 
departure. 

In spite of the many empirical or semi-empirical 
correlations available, nucleate boiling heat transfer 
is much less understood than natural convection. 
This is mainly due to the limited knowledge 
available about the nucleation processes in a 
heterogeneous medium [4]. In this paper the 
nucleation process will not be considered. 

In a well-known paper by Fritz [5], bubble 
departure is considered as a buoyancy phenomenon 
and the departure radius is calculated by a balance 
of surface tension and buoyancy forces. How‘ever, 
since vapour bubbles are growing, surface tension 
forces play a negligible part in comparison to inertia 
forces. In order to determine the departure radius as 
a consequence of buoyancy induced liquid acceler- 
ation, knowledge of the bubble growth rate is of 
essential importance, as has been shown by Maron- 
Moalem et al. [6]. 

In order to determine bubble growth rates 
BoSnjacoviC [7] simplified the hydrodynamics of the 
problem by the assumption that the bubble has a 
spherical shape and that the temperature in the 
bubble equals the saturation temperature T,. Only 
conductive heat transfer in the liquid to the bubble 
cap was considered, resulting in: 

R(t) = ,f, Ja(at)‘/‘, (1) 

where the dimensionless Jakob number equals: 

Both Birkhoff, Margulies and Horning [8] and 
Striven [9] corrected BoSnjacoviC’s result by ac- 
counting for radial convection. They found a 3l” 
higher value for R(t). 

In a survey, Van Stralen [lo], however, stressed 

that under many conditions, e.g. water boiling at 
subatmospheric pressures and liquid metals, the 
assumption T, = T, is not correct and liquid inertia 
has to be included. In this way, for times im- 
mediately after nucleation, the following growth rate 
is found: 

rl ^ 1 1112 

R(t)= ;;(,-,, I . t = Cot. (3) 
s 

Zijl et al. [l l] derived an expression for tran- 
sitional growth, showing that for t < T = aJa’/Ci 
the bubble growth rate is given by (3) and for t >> 5, 
R(t) is given by (1). From their theory it is also seen 
that the temperature of the vapour in the bubble 
decreases gradually from T, = T, for t < z to q, = T, 
for t + z. 

Also for binary systems with a more volatile 
component, expressions have been derived and it is 
shown that for t $ 7 the bubble growth rate is much 
smaller than in a pure liquid under the same 
conditions, the reason being that the bubble tem- 

perature approaches a value T, = T, + AT. The 
practical consequences of this slowing down effect 
have been stressed by Van Stralen [12], indicating 

that a smaller growth rate results in a smaller 
departure radius and consequently in a higher peak 
flux in nucleate boiling. 

In principle the theories mentioned before only 
apply for free bubbles in an initially uniformly 
superheated liquid. Cooper and Lloyd [ 131 extended 
the theory derived in [7-91 to bubble growth at a 
horizontal superheated wall. Although, qualitatively 
speaking, the results do not differ so very much 
compared to the theory of free bubbles, the physics 
of this problem is much more complicated, mainly 
because of the existence of a thin liquid layer, the so- 
called evaporating microlayer, between the wall and 

the bubble. Van Ouwerkerk [ 141 improved the model 
developed in [13] using a similarity solution. Van 

Stralen et al. [15] accounted for the fact that the initial 
temperature field is not uniformly superheated and that 
growth may be inertia-controlled (t < t). 

Knowing the bubble growth rate, Maron-Moalem 
et al. [6] approximated the departure radius with the 
aid of the “Kelvin-momentum” equation for spheri- 
cal free bubbles: 

(4) 

Their results agree with experimental values, ob- 
tained in nucleate boiling at a liquid-liquid interface. 

After bubble departure, cold bulk-liquid, with a 
temperature approximately equal to the saturation 
temperature, flows to the superheated wall. This 
liquid is heated, first only by conduction and after 
some time, when the thermal penetration thickness 



404 W. ZIJL, F. J. M. RAMAKER~ and S. J. D. VAN STRALEN 

has grown so large that the Rayleigh number Ra (01. 

Ra and Rs) exceeds the critical value, also by 
natural convection. This process has been described 
by Han and Griffith [16]. They presented an 
expression for the waiting time, i.e. the time interval 
between bubbIe departure and nucleation, 

Combination of the theory for the bubble growth 
rate [7-93, the theory for the departure time [6) and 
the theory for the waiting time [16] results in an 
expression for the bubble departure radius as a 
function of pressure Rdep + I/p, as has been shown 
by Maron-Moslem and Zijl [17]. It turns out that 
the bubble departure radius is i~d~~endcnt of the 
dimensions of the cavity in the wall, where the 
bubble is nucleated, the dependence on surface 
tension turns out to be the same as predicted by 
Fritz [S]. In this way relatively simple algebraic 
expressions have been obtained to describe buoy- 
ancy effects in a fluid, heated from below, where 
phase transitions take place at the wall. 

However, from a physical point of view the picture 
obtained in this way is not fully satisfactory since in 
all the theories described before, deviations from the 
spherical bubble shape have been neglected; i.e. the 
hydrodynamics of free spherical bubbles has been 
applied. 

Deviations from the spherical bubble shape have 
been treated by Zijl [I81 for gas bubbles and by 
Joosten et nf. [19] for vapour bubbles. The latter 
authors neglected the existence of an evaporating 
microlayer and presented only a crude approxi- 
mation of the heat-transfer process at the bubble cap. 

In the present paper the hydrodynamics of the 
problem wili be solved by the global orthogonal 
collocation method, as has been done in [l&19]. 
The heat-transfer process, however, both in the 
evaporating microlayer and at the bubble cap, will 
be treated in much more detail. For that purpose use 
has been made of the fractional calculus. 

Integrals of fractiona order have been applied for 
the first time by Abel in 1823 for the tautochrone 
problem. In 1920 Heaviside used this concept in 
electromagnetic theory (see [20]). In the field of 
electrochemistry Oldham and Spanier [21] extended 
this theory and presented examples of how to soIve 
complicated diffusion problems in a simple way. An 
example using their theory for growth, oscillations 
and implosion of a spherical free vapour bubble has 
been presented by Zijl et (II. [I 11‘ In this paper the 
formalism of fractional calculus will be used to derive 
equations which can easily be applied in standard 
routines for numerical integration of sets of ordinary 
differential equations. The numerical results pre- 
sented here have been compared with experimental 
data obtained in pure water and water-butanone 
mixtures at subatmospheric pressures. The results 
are in quantitative agreement. 

2. THE EVAPORATING LIQUID MICROLAYER 

2.1. ~ydr~d.vnum~cs ofthe &quid microlayer 

During the time that the bubble contact radius R, 

is growing, a thin layer of liquid remains at the 
heated wall. This liquid layer is a consequence of the 
no-slip boundary condition at the wail for the 
hydrodynamic equations of continuity and con- 
servation of momentum. 

The actual thickness of formation at Y = R,, 
however, is determined by the boundary condition at 
the vapour-liquid interface, expressing that the 
liquid normal stress equals the surface tension, 
caused by curvature of the vapour-liquid interface. 

This process of iiquid microlayer fo~atio~ has 
been discussed by Zijl[22,23]. A modified equation of 
Landau and Levich 1243 for the free coating problem 
has been proposed in order to calculate the thickness of 
formation h, and the radius of curvature r. in the 
meniscus region,? see Fig. 1. The result of Landau and 
Levich is: 

he = 1.333 Yri, ( 1 
2/3 

rm. 
rJ 

The expression to determine r, is given by: 

d2h 
-- 

where the term in the RHS of (6) (the pressure 
caused by system acceleration) replaces the term pgx 
(the pressure caused by gravitational acceleration) in 
Landau and Levich’s [24] result. Integration of 
equation (6) results in: 

dh 

The value of x where dh/dx = 0 is given by: 

4b3 < 1 .f&,b,c) if - , 
27a’c 

4b3 
f,(a,b,c) if - 

27a2c 
2 I, 

@a) 

where 

fo(o,b,c) 

= _ %+(~~3~~_~+(~_~~iz~‘3 

+(~)1’3[;--&-(;-&-)1’2]1’3 (Xb) 

tThe analogy between the formation of a thin liquid 
layer beneath a growing bubble and at a moving plate has 
been suggested independently by Professor G. A. Sparen- 
berg of the Groningen State University during a meeting of 
the Dutch subgroup “Two-phase flow”. 
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bulk liquid 
convection region 
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gravitational accelleration 

axis of symmetry 

Hydrodynamic regions 

bulk liquid -7 
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FIG. 1. Rotational symmetric vapour bubble growing at a superheated horizontal wall. On the left the 
thermal regions and on the right the hydrodynamic regions are indicated. 
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and 

In these expressions a = 2(dJR,)‘, b = -#, 

c = 20/p. 

PC) 

and 

Substitution of @a) into (6) results in the required 
expression for r,,, = l/(d2h/dx2)dh,dx=O: 

c 

rm = f(3qf+ 2b) 

According to Groenveld [25] the mean radius of 

curvature r. is best approximated by r. = 3r,. 

In a binary mixture, the experimentally de- 
termined microlayer thickness turns out to be more 
than two times thicker than the value predicted by 
expression (S), see Section 5. This so-called “water 
paradox” has been explained quantitatively by 
Groenveld [25], who showed that surface tension 
gradients along the meniscus (see Section 3) en- 
abling the interface to support tangential stresses, result 
in an increase of the value for h, by a factor of 2.753. 

After formation of this layer at r = R, the 
thickness decreases for two reasons: 

(i) Especially in the triple interphase region at r 

= R, the vapour-liquid interface is curved. The 
associated surface tension force sets the liquid into 
motion and drives the liquid out of the layer. This 
results in a decrease of thickness. 

(ii) Since the temperature of the microlayer is, in 
general, higher than the temperature of the vapour, a 
heat flux flows from that layer to the vapour-liquid 
interface, causing vaporization of liquid. The vapour 
produced in this way is an important cause of bubble 
growth and is also a reason for the decrease in layer 
thickness. 

Under the assumption that the Bond number 

p&rr $ 1, the following equation, accounting for 
these two effects has been derived by Zijl [22, 331: 

?h 2 0 h3 i2h 4 _=______ 
?t 3 ‘1 r2 ?r2 pl> 

(10) 

where the first term in the RHS accounts for the 
effects mentioned in (i) and the second term in the 
RHS for the effects in (ii). With the auxiliary 
conditions that at r = R,, h = 2q,lq, and ah/& 

= tana, and at r = R,, h = h,, an approximate 
solution is presented by Zijl[32] for the dry area radius 
R,(f)asafunctionoftime.From thisresult itisobserved 
that in water, boiling at subatmospheric pressures. the 
first term in the RHS of (10) may be neglected with 

respect to the second term in the RHS for not too low 
valuesofthe“slipviscosity”r~,. Furthermoreitisderived 
that R, 6 R, during the time that R,. is growing. 

In the deviations of (5,..., 10) steady Stokes flow 
and negligible gravity has been assumed. As has been 
pointed out in the introduction, gravity may result in 
a Benard instability. However, in almost all cases the 
Rayleigh number is smaller than the critical Rayleigh 
number Ra, = 27x4/4 1 657 for this case. 

Since, as will be shown in Section 2.2., evaporation 
takes place at r = R, at a higher rate than at r = R,, 

there is a vapour shear flow from R, to R,, setting 
the film into motion. In addition, in a binary system 
there is a concentration gradient at the 
vapour-liquid interface resulting in a gradient of 
surface-tension in the direction from R, to R,. Also 
this gradient sets the tilm into motion. Such a flowing 
film is unstable and may break up. This effect is damped 
by surface tension 

A third cause of instability has been reported by 
Mesler [26], who showed the existence of ebullition 
of small vapour bubbles in the microlayer. 

In the following only stable microlayers will be 
considered. 
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2.2. Heat transport ifl a stuble liquid rnic~~lff~er the growth rate of the bubble volume is given by: 
In this Section the formalism of fractional calculus 

will be used, see Oldham and Spanier [21]. 

Let us consider what happens at a prescribed plate 
r from the axis of symmetry of the bubble. At a 

certain time t, after start of bubble growth, the 
bubble covers the place r and a microlayer is formed. 

This time is determined by the implicit relationship: 

PC ,>2 
3(t) = -7rb7” dR,t(t,)/‘dt 

I 

X -dr[T,(t)- T,, dt,, 
d(t-t,)‘.‘2 

(15) 

R,(f,) = r. ill) 

Since the temperature of the vapbur at the interface 
T&t} is in general lower than the temperature of the 

wall 7” and consequently also of the temperature of 
the liquid microlayer at the moment when it is 

formed, heat will start flowing from this layer to the 
vapour-liquid interface. According to Oldham and 

Spanier [21] the heat flux at the (plane) interface at 
place. I’ equals : 

When, from the hydrodynamics in the liquid, the 
coordinates of the vapour-liquid interface at the 

bubble cap are known as a function of time (see 
Section 5) V(r) and R,(t) are known and equation 
(15) has to be used to determine the unknown 
vapour temperature at the interface 7&r). In order 
to do this, an approximation is introduced.* 

It was argued before that the most important 
contribution to vapour production comes from times 

shortly after initial formation of the microlayer, i.e. 
for times t 2 t,. During this relatively short time 

interval, the vapour temperature does not change so 
very much and may be assumed to be constant. With 

the property dl/‘l/dt”’ = l/(~~r)‘l’ and the 
Riemann---Liouville definition of fractional integrals 

[21], equation (15) is transformed to: 
(121 

In principle, equation (12) is only valid not too far 

from r = R,, where the penetration thickness for heat 
diffusion is small compared to the microlayer 

thickness. In that region the highest instantaneous 
heat flux occurs, consequently this region contributes 

dominantly to the vapour production. For that 
reason it is approximated that equation (12) is valid 

over the whole surface from r = 0 to r = R,. In this 
way also the existence of a small dry area is 

neglected. 
From expression (12) the total heat Aow to the 

vapour-~liquid interface can be calculated by in- 
tegration over the wetted surface: 

Q&) = - 27cpca Ii2 

x [T,(t)- Tw] dr. (13) 

Only when fi, > 0, i.e, when the bubble covers 
new hot liquid in the microlayer, can equations (1 I) 
and (13) be combined, resulting in: 

The heat flow Qu causes evaporation of the liquid 
microlayer, consequently a flow of vapour mass QJl 
“blows” into the bubble. Since the liquid is much 
denser than the vapour, the bubble volume increases 
much more (a factor p/p,) than the volume of the 
microlayer decreases. When vapour production at 
the bubble cap is neglected it follows from (14) that 

x ;[Thr(f)- T,]dR:jt)/dr), 

or, as an approximation: 

This equation has to be transformed in such a way 

that it can easily be used in a standard routine for 
numerical integration of sets of ordinary differential 

equations. For that purpose, use will be made of the 
composition rule d”‘*,f = d- I” d,J‘-t ~(*~~~~~)I~~, 
where ,f(O) = [7;, - T*.] Rf is assumed to be equal to 
zero. In this way one yields: 

Taking the square of this expression and differen- 

tiation with respect to time results in: 

where the conlposition rule dd- ‘:‘.f = d’:‘f has been 
applied. 

Now use will be made of the Griinwald definition 
of fractional derivatives and integrals [2 l] : 

C=lim _f_-” ’ 
dt4 N-+27 0 N U-4) 

N-1 l-Q-4) xc- . t 
j=. ~(i+~).f +Jyq . (18) i > 

*Equation (16)~~ bederivedewactlyfromequation (15) by 
more complex analysis. 
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Substitution of equation (18) for 4 = -3 and 4 = 3 
in the RHS of (17) results in: 

As a numerical approximation, the number of N 
- 1 memory points for i; will be taken finite. For the 
computation of the memory series (19.2,3), the values 
of v have to be stored at equidistant time intervals. 
However, the integration of equation (19.1) may be 
performed with any subdivision of these intervals, 

required in the numerical integration procedure. 
In the general case that vaporization also takes 

place at the bubble cap, the growth rate of the 
bubble volume ri in equations (U-(19) has to be 
replaced by the volumetric vapour flux rM, denoting 
the volumetric rate of vapour production at the 
vapour-liquid interface in the evaporating 
microlayer. 

3. COMBINED EFFECT OF VAPORIZATION 
AT MICROLAYER AND BUBBLE CAP 

3.1. The thermal boundary layer at the bubble cap 
The process of heat transfer to the bubble cap is 

much harder to describe than the heat transport 
process to the vapour-liquid interface in the evap- 
orating liquid microlayer. This is due to the 
following: 

(i) The bubble cap is not flat, but curved. 
(ii) Since the bubble cap is moving, heat trans- 

port does not only take place by conduction, but 
also by convection. 

(iii) The bubble is surrounded by a non-uniformly 
superheated liquid. 

Because of these reasons the solution around the 
bubble cap will have a more approximate character 
than in the case of the evaporating microlayer. 

The heat transport equation in rotationally sym- 
metric spherical coordinates equals: 

T. (20) 

When there was no buoyancy force, the bubble 
would never depart from the wall and always kept 
its initial hemispherical shape. As an approximation 
this situation will be used for the solution of 
equation (20). In that case the terms with a/a8 
cancel. 

It is convenient to transform to a new coordinate 

z = r-R(t) moving with the velocity of the hemi- 
spherical bubble cap. In this coordinate system the 
spherical symmetric equation (20) becomes: 

(21) 

In a very thin boundary layer z/R + 0 and equation 
(21) reduces to the heat-diffusion equation: 

(22) 

According to Oldham [27], the solution of (22) for 
the heat flux at the hemispherical bubble cap in the 
direction to the vapour-liquid interface equals: 

qR(t) = -pea”* g [G(t)- Tml 

WI - L 
-pca R(t) 

(23) 

Strictly speaking, expression (23) is only valid for 
timeindependentradiusRandtemperatureT,(Q)atthe 
edge of the thermal boundary layer. However, since 
T,(t) changes slowly with respect to TR (t), the range of 
validityfor(23)isassumed to beapproximatelyvalidfor 
varying T,. 

In a paper by Maron-Moalem and Zijl L17], it is 
proved that for large bubbles, occurring in water 
boiling at subatmospheric pressures, the second term 
in the RHS of equation (23), i.e. the curvature term, 
may be neglected. However, it is also proved there 
that the second term in the LHS of equation (21) i.e. 
the radial convection term, has the same order of 
magnitude as the first term in the RHS of (21). 

In order to account for this, equation (23) (with 
negligible curvature term) is “corrected” by adding a 
factor 3’12, see Introduction. 

qR(t) = - 31’2pca1’2 $&.(t)-T,]. (24) 

In case of a free vapour bubble under zero gravity 
conditions, in the mode of asymptotic diffusion 
controlled growth, where TR(t) = T,, equation (24) 
just reduces to equation (l), corrected with the factor 
31j2 obtained by Birkhoff et al. [S]. This result is 
obtained applying the heat flux requirement qR 
= p,llj and the semi-derivative of 1, d”’ l/dt1’2 
= 1/(7rt)“2. 

From expression (24) the total heat flow to the 
vapour-liquid interface can be calculated by in- 
tegration over the surface of the bubble cap: 

s 

n/2 
QR(t) = -2~3”~pca”’ R*(& t) 

e=o 

x sin 0 $ [TR(t)- T, (0, t)] de. 

When vapour production at the evaporating micro- 
layer is neglected, the amount of vapour, caused by 
vaporization of liquid at the bubble cap, blows up 
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the bubble. The volumetric growth rate 3 = QR/pVI 

equals : 

v(t) = _ 2n31/2 P” aliZ 
I 

n/2 

P”l 
R2(& t) 

0 = 0 
dl’2 

x sin Q p [T&I- T,(@ t)] de. (25) 

When T,(f3, t) is also a slowly varying function of 
8, or when the bubble shape is almost spherical, the 
following relationship holds approximately: 

R2(8,t)sinBT,(B,r)d0 

s 

1/2n 

R2(f3, t) sin e dB 
0 

(.I/277 Ali 

I d-l” .n 
R’(B,t)sinB $ T,(8,t)d0 

=--- -” 
&‘I2 s li2n 

R2(B,t)sinHdH 
0 

With the composition rule for f(0) = 0, d-“2d1’2f 
= f it is observed that this is exact for T, 
independent of 8. 

Substitution of this approximation into expression 
(25) results in: 

where the surface of the bubble cap is given by: 

s 

nl’2 
A(t) = 2n R2(H, t) sin 6, do, (27) 

n= 0 

and the mean temperature at the edge of the thermal 
boundary layer is given by: 

R2(0, t)sin U,(B, t)dH. (28) 

Expression (26) can be rewritten as: 

PJ d-“’ v(t) 
&k(t)- T,(t) = - __- ___ -, 

31’2pca”2 dt - 1’2 A(t) 
(29) 

In the same way as in Section 3.2., the Griinwald 
definition of fractional derivatives and integrals (18) 
can be used to transform (29) into expressions 
suitable for numerical integration. The result is: 

In the general case that vaporization also takes 

place at the vapour-liquid interface in the evaporat- 
ing microlayer, the growth rate of the bubble volume 
3 has to be replaced by the volumetric vapour flux 
rR, denoting the volumetric rate of vapour pro- 
duction at the vapour-liquid interface of the bubble 

cap. 

3.2. The vapour temperarure 

It is now assumed that the pressure in the vapour 
is homogeneous in space and only a function of time. 
When it is furthermore assumed that the vapour is in 
thermodynamic equilibrium with the adjacent liquid 
it follows from Clapeyron’s law that (in a pure 
system) also the temperature of the vapour ?;; is 
homogeneous in space, i.e. TM = TR = q,. The as- 
sumption of homogeneous vapour temperature has 
been discussed by Kenning and Toral [28], who 
considered deviations from homogeneity in order to 
explain the occurrence of surface tension gradients 
along the vapour-liquid interface in a pure system. 

Since p = l-,+l-,, where p is known from the 
hydrodynamics of the problem, see Section 5, this set 
can in principle be solved for the two unknowns T, 

and rM (or I-,). 
In a similar way as described in subsections 2.2. 

and 3.1. equation (16) can be transformed to an 
equation suitable for the numerical calculation of 
r,,,(t). Equation (30) is used for the determination of 

T,,(r). However, it turned out that for numerical 
integration many timesteps were required, resulting 
in an intolerably high computation time. Also when 
equation (19) is used for determination of To(r) and 
equation (29) for the determination of r,(t), the 
same difficulties can be expected. For that reason 
another reasonable approximation will be 
introduced 

The temperature calculated with expressions (19), 
where V is the real bubble volume, is defined as 7”. 
In the same way, the temperature defined by 
equations (30) is called Ti. In general TG and T2 are 
only parameters which do not represent a physical 
temperature. Only in the limiting cases where the 
bubble cap or the microlayer do not play a part 7’,‘, 
= 7;,, respectively T: = T,. Now an expression for 
T,, continuously connecting both limiting cases, will 
be derived. 

In subsection 3.1. it is derived that: 

_ I 
T,? = T, --, , d-12 Q 

3 ‘-pc.Lr’ 2 dr- 1.2 A (31) 

If the heat llux r,,, in the evaporating microlayer 
were homogeneous the following expression would 
be obtained instead of (I 6):* 

I 
TG = T,. - _ii 

d-l2 Q 

dt-’ 2 nR;’ 
(32) 

pcrr 

It follows from (3 I ) and (32) that the mean heat flux 
equalsQ.:(3’ 2A+rrRf),andconsequentlythefollowing 

*In [23] it is shown that replacement of n/7,’ by ?nRf in 
equation (32) results in a better approximation. 



expression is approximately true: 

7;. = 
31’2A?x +xR;T,, 

3”2A+~Rf 

I d-l2 Q 
c-7 

~crr”~ dt-“2 3”2A+nRf. 
(33) 
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where porn is the density of the vapour in the 
vapour-gas mixture and psm is the gas-phase density 

of the more volatile component in the mixture. It has 

been proved by van Stralen et al. [29] that p,.,l, 
= p,l, where p, and I are the vapour density, 
respectively latent enthalpy of vaporization in a pure 
system under the same conditions. It has been 
proved by Maron-Moalem and Zijl [17] that C 

= p(M,IM,)X and pgrn = pJM,/M,)Y, where X 
and Y are mole fractions of the more volatile 
component in the liquid and the vapour-gas mixture 
respectively. 

Initially after start of bubble growth contraction of 
the bubble foot does hardly take place, i.e. the bubble 
keeps its hemispherical shape and the ratio A/nRf is 

constant. In that case it follows from (31-33) that: 

1 3’ ‘A(T,*+ r,)+nRf(T$+T,.) 
7; =3- 

3”2A+nRf 
(34) 

As an approximation, expression (34) is used to 
calculate T, from the values of T’ and T,f, obtained 
by the numerical integration of (19) respectively (30). 
In this way a very efficient numerical algorithm has 
been obtained. 

4. EXTENSION TO BINARY MIXTURES 

In view of practical applications (heat exchangers, 
nuclear reactors), great efforts have been made to 
increase the maximum nucleate boiling heat flux, e.g. 
by an elevation of pressure and by the introduction 
of forced convection, both in combination with a 
subcooling of the bulk liquid. Maron-Moalem et al. 
[6] proposed the idea of nucleate boiling at a 
liquid-liquid interface of two immiscible liquids. 
Bubble generation occurs then in close proximity of 
the heated solid wall and the onset of film boiling at 
the wall is prevented. 

Another idea is to use a miscible binary mixture. 
At low concentrations of the more volatile com- 

ponent, the bubble frequency has been increased in 
combination with a diminishing tendency for bubble 
coalescence. The aspect of higher bubble frequency 
will be discussed in this subsection. 

When a more volatile component A is added to 
the liquid B, both in the liquid microlayer and at the 
bubble cap, diffusion of this component to the 
vapour-gas phase takes place. Diffusion at the 
bubble cap has been treated by Zijl et al. [ll], 
consequently only diffusion in the evaporating 
microlayer will be treated here in more detail. 

According to the theory described in Section 2.2., 
the total heat flow Q to the vapour-liquid interface 
satisfies the following expression, see equation (16): 

1 d-’ 2Q 
nRf(T,- T,.) = -- __ 

pea &-“2 (35) 

In a similar way the following expression for the 
total flow Q, of the more volatile component can be 
derived : 

nRf(C,,,-C 
I 

)= _Ld-"2Qc 
D I ‘2 dt-, 2 (36) 

Both by vaporization and by diffusion of the more 
volatile component into the bubble, the volumetric 

flux rM of vapour-gas mixture into the bubble 
equals : 

Q rM=- QC 
I I and TM=-, 

Consequently, expressions (35,36) result in the 

following equations: 

p,J d- *‘2rM 
nRf(T,-T,) = -__ 

peal/2 F’ (37) 

4 
rrRf(X,,,-XX,) = -e 

d-“2(XRrM) 

z 
dt- 112 ’ 

(38) 

In the derivation of (38) use has been made of 
Dalton’s law: 

y = Pmd x _ PAT,) x 

P”vR) M - p, M. 
After linearization of (38) by putting 

d-‘~2(X,\lrM)idt-“2 = X,d-ii2T,,,/dt-“2 

(see [Ill] for the validity of this linearization), the 
following expression is found after elimination of rM 
from (37, 38). 

a ‘I2 pf c 

x,-x, = 0 5 m 
pjKf-a 

a iI2 p;’ c 0 
x,. (39) 

‘- D 
p j(PT,) 

cc 

It has been derived in [l l] by use of Clapeyron’s 

and Raoult’s laws in linearized form, that for the 
vapour-gas pressure pc, which is again assumed to 
be homogeneous in the whole bubble, the following 
expression holds: 

P,-Pea =~(r,-r,)+Pl’(r,)(X,-x,). (40) 
s 

Substitution of (39) into (40) results in: 

p,-pm =gcy-r,,, (41) 
s 

where TV* is defined as: 

~**_T,(i+ynr)(TM-T,)-Y,(T,-T,) (42) 

and yM is defined as: 
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Combination of (37) and (42) results in: 

zR,2(7;.* - T,) 

=- 
Cl +YMK.*)IP& d-l”,>, (44) 

pca1’2 dt- 

where yM(q*) can be determined algebraically by 
expressions (42,43). 

In the same way it can be proved that in a binary 
system equation (29) has to be replaced by [ 1 l] : 

T _ T = _ I+Y,V~IP& d-“2 
R OD 

(45) 

where equation (41) is the same and in equations 

(42, 43) YM + YRI TM -+ TR and T, + T, (- means: 

has to be replaced by). 
Since in a pure system expression (41) remains 

unchanged, with TV* = To, the description of the 
binary system has been reduced to the description of 
a pure system by replacing c in expressions (19), (30) 
by c/( 1 + yM) and c/( 1 + yR) respectively. 

It is noteworthy to mention here that since in 

general T, f T,, the temperatures and concen- 
trations at the vapour-liquid interface in the micro- 
layer and at the bubble cap are not equal, i.e. 7” 
f T’, X, # XR, see equation (42). This fact will 

result in gradients in surface tension over the 
vapour-liquid interface in the meniscus region, 
leading to additional how around the bubble, see 
Kenning and Toral [27]. In Section 2 this effect has 
been accounted for by Groenveld’s correction in 
expression (5) [25]. 

5. CONVECTION AND HYDRODYNAMICS 
OF THE BULK LIQUID 

If it is assumed that the vapour, produced at the 
vapour-liquid interface in the evaporating micro- 
layer, arrives homogeneously at the bubble cap 

R(0,t), the vapour velocity at Y = R(f?, t) equals 
rM/A. The normal displacement of the bubble cap 
per unit of time equals the normal velocity of the 

liquid at the bubble cap (u.II),=~. In this way the 
local heat requirement at r = R(t?,t) equals qR 
= ,Ld[(“.“),,.-TM/A] and the heat flux for r > R 
(i.e. for z z 0) is given by, see Carslaw and Jaeger 

[29]: 

q(2) = 31’ZP,[ s’ +&J 
Pea 

112p 
t’=O (t’ - ty 

x [(u.d),=,--r,/A],=,,dt’. (46) 

rM/A can be determined by expression (24) and 
(II. n),=R follows from the hydrodynamic equations. 
The thickness z = 15(0, t) where q(z)/qR = 5%, can be 
determined numerically and the bulk temperature at 
that place from the bubble cap is considered to be 
equal to T,(B, t), needed for the solution of ex- 
pression (30) with the aid of (28). 

In the bulk liquid, that is the liquid at the edge 
and outside the thermal boundary layer, temperature 

gradients are not so large and heat transport is 
considered to take place only by convection. In this 
way equation (20) reduces to: 

Equation (47) expresses that the temperature does 

not change along a streamline. Consequently, when 
the initial temperature distribution is prescribed, the 
temperature field for t > 0 can easily be determined 

when the flow field in the liquid around the bubble is 
known. 

The determination of this flow field and con- 
sequently the coordinates of the bubble boundary 
have been described in detail by Zijl [18,22] and 
Joosten et a[. [19]. Consequently only a short 

summary will be presented here: 
From a hydrodynamic point of view the heating 

surface is considered as a plane of symmetry between 
the bubble and its surrounding flow field and a 
“mirror” bubble and “mirror” flow field. In this way 

the normal velocity condition at the wall (u. n), = 0 
is satisfied automatically. The no-slip condition at 
the wall does not play a part since for the large 
vapour bubbles under consideration, the liquid 
moves smoothly over a very thin viscous boundary 

layer, which does not affect the bulk flow and the 
bubble shape. The contact angle only plays a part in 

the evaporating microlayer, see Fig. 1. 
In addition it is assumed that the intluence of the 

tangential stress condition at the bubble boundary is 
only limited to a thin hydrodynamic boundary layer 
around the bubble. For a pure system this is a 

reasonable assumption, based on the absence of a 
wake region behind a non-translating bubble. For a 
binary system, however, the validity of this assump- 

tion is questionable since large gradients in tangen- 
tial stress, introduced by gradients in surface tension, 
may cause additional flow phenomena. 

Under the above mentioned restrictions, potential 
flow theory may be applied in the bulk liquid. 
Combination of the Bernouilli equation for the 
liquid pressure, the Laplace equation for the surface 
tension and expression (41) results in the following 
boundary condition for the potential equation for 
the velocity potential V’+ = 0 [18, 19, 221: 

1 dRcos0 
+I--__ (48) 
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The term g(p -p,)R cos 0 represents the buoyancy 
term. This is the only place where this term occurs 

and deviations from the spherical bubble shape, i.e. 
contraction of the bubble foot and ultimately 
departure, are only due to this term. 

The solution of potential equation V”4 = 0, 
satisfying (II. n), = 0 equals 

$(r, 0, t) = : a!&) & P,,(cos 0). 
k=Cl 

As a numerical approximation, this series is cut after 

N terms. Instead of the N unknown expansion 
coefficients [u,(t)]r:d, N values of 4, [&i(t)]E-O’ at N 
discrete angles Qi (the so-called collocation angles) 
can be used.&Jt) = 4[R(ei, t), Bi, t] 

= 

i = O(1)N - 1. (49) 

If boundary condition (48) is only used at these 
prescribed collocation points, a set of N ordinary 
differential equations is found for di(t). 

The condition that the flow velocity equals the 
displacement rate of the bubble boundary is ex- 

pressed by : 

3R &$I 1 8R &j 
- - - - -- - at r = R(B, t). 

z- irr RZ dO d@ 
(50) 

If for every value of Q there is only one value for 
R(B, t), also R(O, t) may be expanded in even 
Legendre polynomials: 

R(B, t) = ; b,(t)P,,(cos 0). 
k=O 

In the same way, this series will be cut after N terms 
and instead of [b,(t)]f~d the set [R,(t)]:-: will be 
used, where b, and Ri are related by the linear 
relationship: 

N-l 

R,(t) = R(Oi, t) = C [PZk(cos Qi)]ikbk(t). 
k=O 

(51) 

when boundary conditions (50) is only satisfied at the 
collocation angles Oi, a set of ordinary differential 

equations is found for R,(t) 
It is noted that the pi = cosBi are chosen as the 

zeros of a Legendre polynomial. Only then con- 
vergence for N -+ co can be guaranteed [22]. The 2N 
ordinary differential equations, obtained in the way 
described above, combined with the two thermal 
ordinary differential equations (19,30), result in a set 
of 2N +2 coupled first order ordinary differential 
equations. This set can easily be solved by numerical 
standard routine. In the examples presented here an 
Euler method (without corrector) has been used. For 
every timestep the algebraic linear sets (49, 51) are 
solved by a Crout routine. In the examples presented 
in Section 6, the computation time at the Burroughs 
B7700 of the Eindhoven Technical University never 
exceeded 10 min. 

6. THEORETICAL PREDICTIONS AND 
COMPARISONS TO EXPERIMENTAL RESULTS 

6.1. The numerical method 

The efficiency of numerical solution by the sets of 

equations (19), (30) will be first discussed for the 
simple case of a spherically symmetric vapour bubble 
in an initially uniformly superheated infinitely ex- 

tended liquid in the absence of gravity. In that case only 
one term in the series (49), (51) is needed and the set 
(48), (50) reduces to the well-known second order 
Rayleigh equation [II], presented here as a set of 
two first order ordinary differential equations: 

dR(t) __ = d(t), 
dt 

(52.1 ) 

20 

dd(t) 
-;R(t)‘+$[T,(t)-q]-- 

s PR@) (52.2) --= 
dt R(t) 

Since no evaporating microlayer is present, only 
equations (30) for TR(t) have to be solved simul- 
taneously with expressions (52) for R(t) and l?(t). In 
this case v/A = d and Ta = T,. S(t) is defined as 

s(t) = [G(t)- T,]‘, so that TR(t)- T, in (52.2) 

equals T, - T, - S(t)“‘. 
The following set of equations is obtained in this 

way : 

where in this simple example Y = (R, d, S). 

In order to obtain a numerical solution, equi- 
distant discrete timesteps At, are chosen and the 
time t equals NAt,, N = 1,2,3 ,..., co. At these 
timepoints the values d[(N-j)AtZ], j = 1,2,. . , N 
- 1, needed in memory series (30.2,3), are stored. For 
the integration from (N - l)At, to NAt,, the interval 
At, may be subdivided into convenient timesteps t, 
< t, ; this is particularly useful in procedures with a 
self-finding timestep. 

In this and further examples presented in this 
paper, a simple Euler method has been used : 

Y, = Y,_, +AtlF(YNJ. 

In this way the set (52), (30) has been solved for a 
free vapour bubble, in water boiling at a pressure p, 
of 20.28 kPa, see Fig. 2. R, has been calculated with 
At, = At2 = 40~s. 

R, has been calculated, initially with half these 
timesteps, but after N = 50, 100, 150, etc. the steps 
are doubled and the values of I? at memory places no 
longer needed have been skipped. In this way the 
computation time has been decreased more than ten 
times. When the memory series are omitted com- 
pletely, the approximation introduced in [18, 191 is 
found. 

6.2. Dependence on initial values 
Van Stralen et al. [31] present experimentally 

determined bubble shapes and values of R,,(t) and 
R,(t) for pure water, boiling at 7.88 kPa (Fig. 6 in 
[31]). Corrected for the hydrostatic pressure of the 
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column of liquid above the superheated wall the 
pressure equals 10.38 kPa. 

For this bubble, photographs, taken from a high 
speed motion picture are presented in Fig. 3. The 
numerically determined bubble shapes, where 3 
collocation points have been used, are shown in Fig. 
4. 

Figure 5 shows R,,(t), R,(t) and T,(t) for N = 3 
collocation points. Also, in case that I?, > 0, the 
meniscus radius r,,(t), calculated with expression (9) 

is presented. 
Initially the liquid is motionless, i.e. r$(r,0,0) = 0 

and the initial bubble radius has been chosen equal 
to Ri = 4aT,/p,l(T,- 7J. In this way the bubble 
starts growing, see equations (52). The initial 
temperature field has been chosen equal to: 

where Tb = T, +AH, and T, = T,+O,. 

FIG. 2. Water boiling at 2028kPa. Comparison between 
the results of two procedures for the numerical calculation 
of the radius of a spherical bubble and the vapour 
superheating. The second, more economical, procedure 

(subscript: 2) gives only slightly different results. cf. text. 

Such a linear temperature field is justified by 
experiments, see Section 6.3. The initial thickness H 
of the thermal boundary layer above the superheated 
wall has been chosen equal to 430pm in order to fit 
the computed data to the experimental values. 

Also experimental data for a water-2-Butanone 
mixture have been presented by van Stralen et al., 

Figs. 8 and 9 [29]. The computed data are shown in 
Figs. 6 and I. 

t=6m 

t=l5m 

t=30m 

t-horns 

t =50ms 

t =75ms 

FIG. 3. Water boiling at 10.38 kPa. Photographs taken from a high speed motion picture, cf: Fig. 5. 
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FIG. 5. ~urner~call~ calculated bubble profile in water boiling at 10.38 kPa, (:$I Figs. 3 and 4. initial 
bubble shape is hemispherical, corres~nding with a small meniscus radius. 

I _...---A I I 

0 
I300 ) 

10 20 30 LO 
t, ms 

FIG. 6. ~a~cr-~-butanone, {X, = 0.0:) boiling at 9.83 kPa. Numerically calculated ~u~~al~~t bubble 
radius, Roe. wntact radius, R,, ratio, R,/R,,, vapour temperatures, TR and ‘I’& and the meniscus radius rO, 

in de~~d~nc~ on time. The vapour temperatures T, and -r, are calculated from equations (30) and (191, 
resp~tive~y. 
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FIG. 7. Numerically calculated bubble profile in water-2-butanone (X, = 0.01) boiling at 9.83 kPa, cf: 
Fig. 6. In comparison to water (Fig. 5) bubble growth rate is slowed down, bubble departure radius and 

time are decreased and the ratio of the initial meniscus radius to the bubble radius is increased. 

35 
----_,aT,K 

40 L5 

\ 

-r-l~-- I- 1 

Water-2-Butanone 

FIG. 8. Experimental temperature profile in the thermal boundary layer for water (T, = 321.OK) and for 
the mixture waterr2-butanone (X, = 0.01, T, = 331.6 K), in absence of bubbles. 

6.3. Measurements of the initial temperaturejield 

In the same boiling apparatus as referred to in 

[30] temperature fields were measured without 
occurrence of a bubble, both in pure and binary 
mixtures. 

The temperature in the thermal boundary layer 
has been determined by a thin thermocouple, which 
could be moved up and down by a micrometer. The 
temperature of the bulk liquid was determined by 
three fixed thermocouples. 

The results are plotted in Fig. 8 for a pure and a 
binary system. The difference in thermal boundary- 
layer thickness between the pure and the binary 
system may be attributed to the fact that in the 
binary mixture the liquid is stirred in order to obtain 

,a homogeneous mixture. The measured results are 
independent of the waiting time. 

In Fig. 9 a temperature profile is measured and the 
saturation temperature is plotted as a function of the 
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FIG. IO. Water boiling at 9.6OkPa. Experimental equiva- 
lent bubble radius, R,,, contact radius, R,, and ratio, 

RJR,,, in dependence on time, cf: Fig. 11. 

hAT,K 

FIG. 9. Water. Experimental temperature profile (-----) and 
height of the liquid column. Even a region with low 

corresponding saturation temperature (+-) in dependence s&cooling exists. In the numerical examples pre- 

on distance to heating surface. Locally, subcooling of liquid sented here, only one constant mean saturation 
can occur. temperature has been used. 

1 I I I I 2.5 350 

/ 

Water 21) 
Pm= 9.60kPa 
Ts =3183K 

FIG. 1 L. Water boiling at 9.60 kPa. Numerically calculated equivalent bubble radius, R,,, contact radius, 
R,, ratio. RJR,,, vapour temperature, ‘& and meniscus radius, ro, in dependence on time. The conditions 

are identical to Fig. IO 
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FIG. 12. Water. Theoretical initial thickness of evaporation 
microlayer in dependence on time for ri, > 0, cf: Fig. 11. 

6.4. Pure water, boiling rrt 9.60 kPa 
Figure IO shows the expe~mentally 

values of R,(t) and R,(t). Figure 11 
determined 

shows the 
computed equivalent of Fig. 10, including a plot of 
r,(t) for R, > 0 and of TV(r). Figure 12 presents a plot 
of h,(t) for R, > 0. In Fig 13 the temperature field 

and bubble shape are shown for short times after 
bubble formation. Figure 14 shows that initially 

R,(t) - t. 
Figure 15 shows the hypothetical case that there 

would not be evaporation in the liquid microlayer. 
Figures 16 and 17 show the same bubble, however, 
growing with lower superheatings. From Figs. 15-17 
it is observed that departure time and radius 
decrease ~onsiderabIy when less superheat is 
available. 
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FIG. 13. Water boiling at 9.60kPa. Numerically calculated isotherms in the liquid surrounding a growing 
vapour bubble. 
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FIG. 14. Water boiling at 9.60kPa. Numerically calculated initial equivalent bubble radius, R,,, and 
vapour temperature T, in dependence on time. The calculated bubble shape is hemispherical. 
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FIG. 15. Water boiling at 9.60 kPa. Numerically calculated 
equivalent bubble radius, R,,, contact radius, R,, ratio 

RJR,,, bubble temperature T, and meniscus radius r0 in 
dependence on time. The contribution of evaporation 
microlayer is omitted. Cf. the results of Fig. 11, where the 

evaporation microlayer is taken into account. 

Finally, Fig. 18 presents the same bubble under 
zero gravity conditions; the bubble keeps its hemi- 
spherical shape. 
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SOLUTIONS NUMERJQUES GLOBALES DE CROJSSANCE ET DE 
SEPARATION DUNE BULLE SUR UNE PAROJ HORIZONTALE 

SURCHAUFFEE DANS UN LIQUIDE PUR ET DANS UN MELANGE 
BJNAJRE 

Resnme’On etudie par des methodes numeriques globales la croissance et la separation de bulles de 
vapeur sur une paroi horizontale surchauffee. La forme integrale de l’tquation de transport de la 
chaleur a ete resolue par des developpements en strie obtenuspar la theorie des derivations fractionnaires. 
La methode de colocation orthogonale est appliquee a l’ecoulement potentiel autour de la bulle. De cette 
maniere un systtme de huit ou dix equations differentielles est integre par ordinateur. Les resultats, pour 
des repartitions donnecs de temperature initiale sont en accord quantitatif avec des resultats 
experimentaux obtenus dans l’eau et des melanges binaires aqueux en ebullition a la pression 

atmospherique. 

GLOBALE NUMERISCHE LijSUNG FiiR WACHSTUM UND ABLijSUNG 
EINER DAMPFBLASE AN EJNER HORIZONTALEN UBERHJTZTEN WAND 

IN EJNER REJNEN FLijSSJGKEIT UND EINEM BINliREN GEMISCH 

Zusammenfassung-Das Wachstum und das durch Auftrieb hervorgerufene Abliisen von Dampfblasen 
an einer horizontalen tiberhitzten Wand wurden mittels globaler numerischer Methoden untersucht. 
Die Jntegralformen der Warmetransportgleichung wurden mit Hilfe von Reihenentwicklungen geliist, 
die man aus der Theorie der partiellen Ableitungen erhalten hatte. Fur die Potentialstromung urn die 
Blase wurde die globale orthogonale Kollokationsmethode angewandt. Auf diese Art und Weise ist nur 
ein Satz von acht oder zehn einfachen Differentialgleichungen vom Computer zu integrieren. Die 
Ergebnisse, die sich aus vorgegebenen Anfangstemperaturverteilungen ergeben, stimmen quantitativ mit 
experimentellen Daten fiberein, die durch Siedeversuche bei unteratmospharischen Drticken mit Wasser 

und wagrigen bin&-en Gemischen gewonnen wurden. 
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OEOP~EHHOE YWCJIEHHOE WCCJlEAOBAHkiE POCTA H OTPbIBA I-IAPOBbIX 
LIY3bIPbKOB HA I-OPM30HTAJIbHOfi I-IEPETPETOfi CTEHKE B YHCTOR 

‘HCH~KOCTM M 6MHAPHOt-l CMECM 

AIIHOT~UY~-C IIOMOUWO 0606u&HHbIx 'lHC.WHHbIX MCTOnOB lW2ICnyC.TUl FT H BbI3BaHHbIji 

WlaBy'IeCTbKJ OTpbIB IIapOBbIX ny3bIpbKOB Ha rOpA30HTanbHOfi neperpeTOii CTeHKe. klHTerpa,IbHbIe 

ypaBHeHua nepemca Tenna pemeHbl c noh4ouwo pamo*eeeit B pnAb1 B paMKax Teopmi Apo6sb1x 

npOH3BOAHbIX. &IS OllHCaHHII IlOTeHU&inbHOl-0 06TCKaHWi IIy3bIpbKOB HCnOJIb30BaJICR 06o6ueH- 
Hblti OpTOrOHanbHbt4 MCTOA KOnnOKaUHk 'iT0 n03BOnWIO IIpOlMTerpkSpOBaTb Ha KOMnbIOTepe 

CHCTeMy TOnbKO W3 BOCbMH HJIH AeCIlTU 06bIKHOBeHHbIX AH++e~HUHanbHbIX ypaBHeHL& npkj 

3aAaHHbIX Ha'ianbHbIX ~Cn~L,!ZleHBIX TeMnepaTypbI nOAy'IeHHbIe pe3ynbTaTbI KOnW4eCTBeHHO COrJIa- 

CyEOTCK C 3KCIIepHMeHTanbHbIMW AaHHbIMB A.WI BOAbI B BOAHbIX 6RHapHbIX CMeCei?, K,,I,ll",WX IIpH 

AaBneHenx,HaEeaTMoc~epHoro. 


